perfm {PanelTM} | R Documentation |
Performance measures of the (two-way or three-way) panel threshold regression model estimated on simulated data.
Description
Computes the relative bias, the bias, the root mean squared error, and the relative root mean squared error.
Usage
perfm(truepar,estpar)
Arguments
truepar |
True value of the parameter. |
estpar |
Vector of the estimated parameters (one value per each simulated dataset). |
Details
perfm
computes the following performance measures: the relative bias, the bias, the root mean squared error, and the relative root mean squared error.
Value
An object of S4 class "perfm", which is a list
with the following values: the true value of the parameters, the relative bias, the bias, the root relative mean squared error, the relative root relative means squared error.
Note
The vector of the estimated parameters can contain missing values that are excluded from the computation of the performance mesaures.
Author(s)
Francesca Marta Lilja Di Lascio <marta.dilascio@unibz.it>
Selene Perazzini <selene.perazzini@alumni.imtlucca.it>
References
Di Lascio, F.M.L. and Perazzini, S. (202x) A three-way dynamic panel threshold regression model for change point detection in bioimpedance data. Submitted.
Di Lascio, F.M.L. and Perazzini, S. (2022) Change point detection in fruit bioimpedance using a three-way panel model. Book of short papers - SIS2022, p.1184-1189, Eds. A. Balzanella, M. Bini, C. Cavicchia, R. Verde. Pearson. ISBN: 978-88-9193-231-0.
See Also
See also ptm2
, ptm3
and simptm
.
Examples
# Simulation of the two-way panel threshold model
# y_{it} = (-0.7-0.5*x_{it})1(y_{it-1}<=0) + (1.8+0.8*x_{it})1(y_{it-1}>0)
# Two datasets with 20 individuals observed over 15 times with change
# point at time 12 and an autoregressive error term (with parameter 0.7
# and unit error variance).
sims <- simptm(n=20, T.=15, J=1, CP=12, gamma=c(0),
phi_c=matrix(c(-0.7,1.8), nrow=1, byrow=TRUE),
phi_X=matrix(c(-0.5,0.8), nrow=1, byrow=TRUE), sigmau=1,
parAR=0.2, B=2, seedstart=1)
# Estimate the two simulated two-way panel threshold models
estimates1 <- ptm3(sims@simulation[[1]], nameI="i", nameT="t", nameJ="j",
nameY="Y", nameXexo="X1", nameXendo=NULL, nameTV=NULL,
nameIV=NULL, trimrate=0.4, ngrid=100, h0=1.5,
Iweight=FALSE, test.lin=FALSE)
estimates2 <- ptm3(sims@simulation[[2]], nameI="i", nameT="t", nameJ="j",
nameY="Y", nameXexo="X1", nameXendo=NULL, nameTV=NULL,
nameIV=NULL, trimrate=0.4, ngrid=100, h0=1.5,
Iweight=FALSE, test.lin=FALSE)
# Compute performance measures for the parameter beta of the exogenous
# regressor (for details see refs)
pm1 <- perfm(truepar=-0.5, estpar=c(estimates1@param[,2],
estimates2@param[,2]))
pm1
# Compute performance measures for the delta corresponding to the
# difference between the constants of the model (for details see refs)
pm2 <- perfm(truepar=c(1.8+0.7), estpar=c(estimates1@param[,4],
estimates2@param[,4]))
pm2
# Compute performance measures for the delta corresponding to the
# difference between the regressors coefficients of the model
# (for details see refs)
pm3 <- perfm(truepar=c(0.8+0.5), estpar=c(estimates1@param[,6],
estimates2@param[,6]))
pm3