path_weights {PairViz} | R Documentation |
Utility functions to manipulate pairwise information.
Description
These functions perform calculations on edge matrices containing pairwise information.
Usage
path_weights(edgew, path, symmetric = TRUE,edge.index=edge_index(edgew),...)
path_cis(edgew, path,edge.index=edge_index(edgew),ci.pos=FALSE)
edge2dist(edgew, edge.index=edge_index(edgew))
dist2edge(d)
edge_index(x, order="default")
Arguments
edgew |
A Matrix (or vector) whose ith row (or element) has weights for pair indexed by pair in row i of edge.index.
For |
path |
Vector of indices into rows of |
symmetric |
If |
edge.index |
A 2-column matrix with each row giving indices for
corresponding weight in |
ci.pos |
If TRUE, all CIs are mu(max) - mu(min), otherwise mu(right) - mu(left). |
d |
A |
order |
If "low.order.first" or "scagnostics", lists lowest index pairs first, otherwise lists pairs starting with 1, then 2 etc. |
x |
An edgew matrix or vector, or a positive integer. |
... |
Ignored |
Details
path_weights
- Returns matrix of path weights so that the ith row of result contains weights for indices path[i], path[i+1]
path_cis
- Returns matrix of path confidence intervals so that the ith row of result contains intervals for mean-path[i] - mean-path[i+1]
edge2dist
- Returns a dist
,
containing elements of edgew
.
dist2edge
- Returns a vector of edge weights.
edge_index
-A generic function. Returns a 2-column matrix with one row for
each edge. Each row contains an index pair i,j. If order
is "low.order.first" or "scagnostics", lists lowest index pairs first - this is the default ordering for class scagdf
, otherwise lists pairs
starting with 1, then 2 etc
nnodes
- Here edgew
contains edge weights for a complete graph; returns the number of nodes in this complete graph.
Author(s)
C.B. Hurley and R.W. Oldford
References
see overview
Examples
require(PairViz)
s <- matrix(1:40,nrow=10,ncol=4)
edge2dist(s[,1])
path_weights(s,1:4)
path_weights(s,eseq(5))
fm1 <- aov(breaks ~ wool + tension, data = warpbreaks)
tuk <- TukeyHSD(fm1, "tension")[[1]]
# Here the first argument (weight matrix) can have number of columns
path_weights(tuk,c(1:3,1))
# Here the first argument (weight matrix) should have an odd number of columns-
# the first is the mean difference, other column pairs are endpoints of CIs
path_cis(tuk[,-4],c(1:3,1))