plr_weighted_regression {PVplr}R Documentation

Weighted Regression

Description

Automatically calculates Performance Loss Rate (PLR) using weighted linear regression. Note that it needs data from a power predictive model.

Usage

plr_weighted_regression(
  data,
  power_var,
  time_var,
  model,
  per_year = 12,
  weight_var = NA
)

Arguments

data

The result of a power predictive model

power_var

String name of the variable used as power

time_var

String name of the variable used as time

model

String name of the model that the data was passed through

per_year

the time step count per year based on the model - 12 for month-by-month, 52 for week-by-week, and 365 for day-by-day

weight_var

Used to weight regression, typically sigma.

Value

Returns PLR value and error evaluated with linear regression

Examples

# build var_list
var_list <- plr_build_var_list(time_var = "timestamp",
                               power_var = "power",
                               irrad_var = "g_poa",
                               temp_var = "mod_temp",
                               wind_var = NA)
# Clean Data
test_dfc <- plr_cleaning(test_df, var_list, irrad_thresh = 100,
                         low_power_thresh = 0.01, high_power_cutoff = NA)
                         
# Perform the power predictive modeling step
test_xbx_wbw_res <- plr_xbx_model(test_dfc, var_list, by = "week",
                                  data_cutoff = 30, predict_data = NULL)
                                  
# Calculate Performance Loss Rate
xbx_wbw_plr <- plr_weighted_regression(test_xbx_wbw_res, 
                                       power_var = 'power_var', 
                                       time_var = 'time_var',
                                       model = "xbx", 
                                       per_year = 52, 
                                       weight_var = 'sigma')


[Package PVplr version 0.1.2 Index]