plr_weighted_regression {PVplr} | R Documentation |
Weighted Regression
Description
Automatically calculates Performance Loss Rate (PLR) using weighted linear regression. Note that it needs data from a power predictive model.
Usage
plr_weighted_regression(
data,
power_var,
time_var,
model,
per_year = 12,
weight_var = NA
)
Arguments
data |
The result of a power predictive model |
power_var |
String name of the variable used as power |
time_var |
String name of the variable used as time |
model |
String name of the model that the data was passed through |
per_year |
the time step count per year based on the model - 12 for month-by-month, 52 for week-by-week, and 365 for day-by-day |
weight_var |
Used to weight regression, typically sigma. |
Value
Returns PLR value and error evaluated with linear regression
Examples
# build var_list
var_list <- plr_build_var_list(time_var = "timestamp",
power_var = "power",
irrad_var = "g_poa",
temp_var = "mod_temp",
wind_var = NA)
# Clean Data
test_dfc <- plr_cleaning(test_df, var_list, irrad_thresh = 100,
low_power_thresh = 0.01, high_power_cutoff = NA)
# Perform the power predictive modeling step
test_xbx_wbw_res <- plr_xbx_model(test_dfc, var_list, by = "week",
data_cutoff = 30, predict_data = NULL)
# Calculate Performance Loss Rate
xbx_wbw_plr <- plr_weighted_regression(test_xbx_wbw_res,
power_var = 'power_var',
time_var = 'time_var',
model = "xbx",
per_year = 52,
weight_var = 'sigma')
[Package PVplr version 0.1.2 Index]