plr_6k_model {PVplr} | R Documentation |
6k Method for PLR Determination
Description
This function groups data by the specified time interval and performs a linear regression using the formula: power_var ~ irrad_var/istc * (nameplate_power + a*log(irrad_var/istc) + b*log(irrad_var/istc)^2 + c*(temp_var - tref) + d*(temp_var - tref)*log(irrad_var/istc) + e*(temp_var - tref)*log(irrad_var/istc)^2 + f*(temp_var - tref)^2). Predicted values of irradiance, temperature, and wind speed (if applicable) are added for reference. These values are the lowest daily high irradiance reading (over 300W/m^2), the average temperature over all data, and the average wind speed over all data.
Usage
plr_6k_model(
df,
var_list,
nameplate_power,
by = "month",
data_cutoff = 30,
predict_data = NULL
)
Arguments
df |
A dataframe containing pv data. |
var_list |
A list of the dataframe's standard variable names, obtained from
the output of |
nameplate_power |
The rated power capability of the system, in watts. |
by |
String, either "day", "week", or "month". The time periods over which to group data for regression. |
data_cutoff |
The number of data points needed to keep a value in the final table. Regressions over less than this number and their data will be discarded. |
predict_data |
optional; Dataframe; If you have preferred estimations of irradiance, temperature, and wind speed, include them here to skip automatic generation. Format: Irradiance, Temperature, Wind (optional). |
Value
Returns dataframe of results per passed time scale from 6K modeling