crank {PUPAK}R Documentation

Non-Linear Crank Diffusion Model

Description

The Crank Diffusion Model is an equation for homogeneous adsorbate diffusion in a sphere-shaped adsorbent with constant surface diffusivity throughout the particle. It's an exact solution for the "infinite bath" case, in which the sphere starts out empty and the solute concentration at the surface remains constant. Due to the constant surface concentration, external film resistance may be ignored (Qiu, Lv, Pan, Zhang, Zhang, and Zhang, 2009).

Usage

crank(t, qt, qinf)

Arguments

t

the numerical value for contact time

qt

the numerical value for the amount adsorbed at time t

qinf

the numerical value for the amount adsorbed at infinite time. If this argument is not defined, it will be estimated.

Value

the non-linear regression and the parameter estimation for the Crank Adsorption Kinetic Model

Author(s)

Jeff Ryan S. Magalong

Joshua Z. DelaCruz

Jeann M. Bumatay

Chester C. Deocaris

References

Crank, J. (1979) <ISBN, 0198534116, 9780198534112>The mathematics of diffusion. Oxford university press.

Qiu, H., Lv, L., Pan, B. C., Zhang, Q. J., Zhang, W. M., &; Zhang, Q. X. (2009) <doi:10.1631/jzus.A0820524> Critical review in adsorption kinetic models. In Journal of Zhejiang University: Science A (Vol. 10, Issue 5, pp. 716-724).

Examples


t <- c(0,15,30,45,60,75,90,105,120)
qt <- c(0.000,3.718,3.888,4.102,4.274,4.402,4.444,4.488,4.616)
qinf <- 4.68
crank(t,qt,qinf)

[Package PUPAK version 0.1.1 Index]