FCAk {PTAk} | R Documentation |
Generalisation of Correspondence Analysis for k-way tables
Description
Performs a particular PTAk
data as a ratio Observed/Expected
under complete independence with metrics as margins of the multiple
contingency table (in frequencies).
Usage
FCAk(X,nbPT=3,nbPT2=1,minpct=0.01,
smoothing=FALSE,smoo=rep(list(
function(u)ksmooth(1:length(u),u,kernel="normal",
bandwidth=3,x.points=(1:length(u)))$y),length(dim(X))),
verbose=getOption("verbose"),file=NULL,
modesnam=NULL,addedcomment="",chi2=TRUE,E=NULL, ...)
Arguments
X |
a multiple contingency table (array) of order k |
nbPT |
a number or a vector of dimension (k-2) |
nbPT2 |
if 0 no 2-modes solutions will be computed, 1 =all, >1 otherwise |
minpct |
numerical 0-100 to control of computation of future solutions at this level and below |
smoothing |
see |
smoo |
see |
verbose |
control printing |
file |
output printed at the prompt if |
modesnam |
character vector of the names of the modes, if |
addedcomment |
character string printed if |
chi2 |
print the chi2 information when computing margins in |
E |
if not |
... |
any other arguments passed to SVDGen or other functions |
Details
Gives the SVD-kmodes decomposition of the 1+\chi^2/N
of
the multiple contingency table of full count N=\sum X_{ijk...}
,
i.e. complete independence + lack of independence (including marginal
independences) as shown for example in Lancaster(1951)(see reference
in Leibovici(2000)). Noting P=X/N
, a PTAk
of the
(k+1)
-uple is done, e.g. for a three way contingency table
k=3
the 4-uple data and metrics is:
((D_I^{-1} \otimes D_J^{-1} \otimes D_K^{-1})P, \quad D_I, \quad D_J, \quad D_K)
where the metrics are diagonals of the corresponding margins. For
full description of arguments see PTAk
. If E
is not NULL
an FCAk-modes relatively to a model is
done (see Escoufier(1985) and therin reference
Escofier(1984) for a 2-way derivation), e.g. for a three way contingency table
k=3
the 4-tuple data and metrics is:
((D_I^{-1} \otimes D_J^{-1} \otimes D_K^{-1})(P-E), \quad D_I, \quad D_J, \quad D_K)
If E
was the complete independence (product of the margins)
then this would give an AFCk
but without looking at the
marginal dependencies (i.e. for a three way table no two-ways lack of
independence are looked for).
Value
a FCAk
(inherits PTAk
) object
Author(s)
Didier G. Leibovici
References
Escoufier Y (1985) L'Analyse des correspondances : ses propri<e9>t<e9>s et ses extensions. ISI 45th session Amsterdam.
Leibovici D(1993) Facteurs <e0> Mesures R<e9>p<e9>t<e9>es et Analyses Factorielles : applications <e0> un suivi <e9>pid<e9>miologique. Universit<e9> de Montpellier II. PhD Thesis in Math<e9>matiques et Applications (Biostatistiques).
Leibovici D (2000) Multiway Multidimensional Analysis for Pharmaco-EEG Studies.http://www.fmrib.ox.ac.uk/analysis/techrep/tr00dl2/tr00dl2.pdf
Leibovici DG (2010) Spatio-temporal Multiway Decomposition using Principal Tensor Analysis on k-modes:the R package PTAk. Journal of Statistical Software, 34(10), 1-34. doi:10.18637/jss.v034.i10
Leibovici DG and Birkin MH (2013) Simple, multiple and multiway correspondence analysis applied to spatial census-based population microsimulation studies using R. NCRM Working Paper. NCRM-n^o 07/13, Id-3178 https://eprints.ncrm.ac.uk/id/eprint/3178
See Also
Examples
# try the demo
# demo.FCAk()