cv.trans.psa {PSAgraphics}R Documentation

Transformation of Factors to Individual Levels

Description

The function cv.trans.psa takes a covariate data frame and replaces each categorical covariate of n >=3 levels with n new binary covariate columns, one for each level. Transforms covariate dataframe for use with the function cv.bal.psa.

Usage

cv.trans.psa(covariates, fcol = NULL)

Arguments

covariates

A dataframe of covariates, presumably some factors.

fcol

An optional vector containing the factor columns in the covariate dataframe. In NULL (default) routine to identfy factors internally.

Value

Returns a dataframe covariates.transformed containing new columns for each level of more than binary factors. The rest of the covariate dataframe stays unchanged.

Author(s)

James E. Helmreich James.Helmreich@Marist.edu

Robert M. Pruzek RMPruzek@yahoo.com

KuangNan Xiong harryxkn@yahoo.com

See Also

cv.bal.psa, loess.psa, cstrata.psa, cv.trans.psa

Examples


#Note reordering of columns, binary factor and numeric column are unchanged.
f2 <- factor(sample(c(0, 1), 20, replace = TRUE))
f4 <- factor(sample(c("a", "b", "c", "d"), 20, replace = TRUE))
cv <- rnorm(20)
X <- data.frame(f2, f4, cv)
cv.trans.psa(X)
#
f2 <- factor(sample(c('c', 'C'), 20, replace = TRUE))
f4 <- factor(sample(c("b", "A", "d", "CC"), 20, replace = TRUE))
cv <- rnorm(20)
X <- data.frame(f2, f4, cv)
cv.trans.psa(X)


[Package PSAgraphics version 2.1.3 Index]