cv.trans.psa {PSAgraphics} | R Documentation |
Transformation of Factors to Individual Levels
Description
The function cv.trans.psa
takes a covariate data frame and replaces
each categorical covariate of n >=3 levels with n
new binary
covariate columns, one for each level. Transforms covariate dataframe for
use with the function cv.bal.psa
.
Usage
cv.trans.psa(covariates, fcol = NULL)
Arguments
covariates |
A dataframe of covariates, presumably some factors. |
fcol |
An optional vector containing the factor columns in the covariate dataframe. In NULL (default) routine to identfy factors internally. |
Value
Returns a dataframe covariates.transformed
containing new
columns for each level of more than binary factors. The rest of the
covariate dataframe stays unchanged.
Author(s)
James E. Helmreich James.Helmreich@Marist.edu
Robert M. Pruzek RMPruzek@yahoo.com
KuangNan Xiong harryxkn@yahoo.com
See Also
cv.bal.psa
, loess.psa
,
cstrata.psa
, cv.trans.psa
Examples
#Note reordering of columns, binary factor and numeric column are unchanged.
f2 <- factor(sample(c(0, 1), 20, replace = TRUE))
f4 <- factor(sample(c("a", "b", "c", "d"), 20, replace = TRUE))
cv <- rnorm(20)
X <- data.frame(f2, f4, cv)
cv.trans.psa(X)
#
f2 <- factor(sample(c('c', 'C'), 20, replace = TRUE))
f4 <- factor(sample(c("b", "A", "d", "CC"), 20, replace = TRUE))
cv <- rnorm(20)
X <- data.frame(f2, f4, cv)
cv.trans.psa(X)