weather_sim_multi_sites {PRSim} | R Documentation |
Simulated temperature and precipitation for two grid cells
Description
The dataset is generated with the package own routines and represent 5 series of 38 years of meteorological data for two grid cells
Usage
data("weather_sim_multi_sites")
Format
Two lists (one per variable) of four elements (one per catchment), containing a data frame each holding information about the observed time series and the stochastic simulations
YYYY
a numeric vector, year
MM
a numeric vector, month
DD
a numeric vector, day
timestamp
POSIXct
vector of the daily runoffPrec/Temp
observed precipitation/temperature
r1
,...,r5
5 simulated data series
Details
The data is included to illustrate the validation and visualization routines in demo("PRSim_weather-validate")
.
Source
The data has been generated with
prsim.weather(data_p=data_p, data_t=data_t, number_sim=5, p_margin='egpd',t_margin='sep')
(default values for all other arguments).
References
Brunner, M. I., and E. Gilleland (2021). Spatial compound hot-dry events in the United States: assessment using a multi-site multi-variable weather generator, in preparation.
Examples
oldpar <- par(mfrow = c(2, 1), mar = c(3, 3, 2, 1))
data(weather_sim_multi_sites)
sim <- weather_sim_multi_sites
### define plotting colors
col_sim <- adjustcolor("#fd8d3c",alpha=0.8)
col_sim_tran <- adjustcolor("#fd8d3c",alpha=0.2)
col_obs <- adjustcolor( "black", alpha.f = 0.2)
### greys
col_vect_obs <- c('#cccccc','#969696','#636363','#252525')
### oranges
col_vect_sim <- c('#fdbe85','#fd8d3c','#e6550d','#a63603')
### plot time series for multiple sites
### Temperature (first list entry)
par(mfrow=c(2,1),mar=c(3,3,2,1))
### determine ylim
ylim_max <- max(sim[[1]][[1]]$Temp)*1.5
### observed
plot(sim[[1]][[1]]$Temp[1:1000],
ylab=expression(bold(paste("Temperature [degrees]"))),
xlab="Time [d]",type="l",col=col_vect_obs[1],
ylim=c(0,ylim_max),main='Observations')
for(l in 2){
lines(sim[[l]][[1]]$Temp[1:1000],col=col_vect_obs[l])
}
# legend('topleft',legend=c('Station 1','Station 2'
# ),lty=1,col=col_vect_obs[1:2])
### simulated (one run)
plot(sim[[1]][[1]]$r1[1:1000],
ylab=expression(bold(paste("Temperature [degrees]"))),
xlab="Time [d]",type="l",col=col_vect_sim[1],
ylim=c(0,ylim_max),main='Stochastic simulations')
for(l in 2){
lines(sim[[l]][[1]]$r1[1:1000],col=col_vect_sim[l])
}
### precipitation (second list entry)
ylim_max <- max(sim[[1]][[2]]$Prec)*1
### observed
plot(sim[[1]][[2]]$Prec[1:1000],
ylab=expression(bold(paste("Precipitation [mm/d]"))),
xlab="Time [d]",type="l",col=col_vect_obs[1],
ylim=c(0,ylim_max),main='Observations')
for(l in 2){
lines(sim[[l]][[2]]$Prec[1:1000],col=col_vect_obs[l])
}
# legend('topleft',legend=c('Station 1','Station 2'
# ),lty=1,col=col_vect_obs[1:2])
### simulated (one run)
plot(sim[[1]][[2]]$r1[1:1000],
ylab=expression(bold(paste("Precipitation [mm/d]"))),
xlab="Time [d]",type="l",col=col_vect_sim[1],
ylim=c(0,ylim_max),main='Stochastic simulations')
for(l in 2){
lines(sim[[l]][[2]]$r1[1:1000],col=col_vect_sim[l])
}
par(oldpar)