| weather_sim_multi_sites {PRSim} | R Documentation |
Simulated temperature and precipitation for two grid cells
Description
The dataset is generated with the package own routines and represent 5 series of 38 years of meteorological data for two grid cells
Usage
data("weather_sim_multi_sites")
Format
Two lists (one per variable) of four elements (one per catchment), containing a data frame each holding information about the observed time series and the stochastic simulations
YYYYa numeric vector, year
MMa numeric vector, month
DDa numeric vector, day
timestampPOSIXctvector of the daily runoffPrec/Tempobserved precipitation/temperature
r1,...,r55 simulated data series
Details
The data is included to illustrate the validation and visualization routines in demo("PRSim_weather-validate").
Source
The data has been generated with
prsim.weather(data_p=data_p, data_t=data_t, number_sim=5, p_margin='egpd',t_margin='sep')
(default values for all other arguments).
References
Brunner, M. I., and E. Gilleland (2021). Spatial compound hot-dry events in the United States: assessment using a multi-site multi-variable weather generator, in preparation.
Examples
oldpar <- par(mfrow = c(2, 1), mar = c(3, 3, 2, 1))
data(weather_sim_multi_sites)
sim <- weather_sim_multi_sites
### define plotting colors
col_sim <- adjustcolor("#fd8d3c",alpha=0.8)
col_sim_tran <- adjustcolor("#fd8d3c",alpha=0.2)
col_obs <- adjustcolor( "black", alpha.f = 0.2)
### greys
col_vect_obs <- c('#cccccc','#969696','#636363','#252525')
### oranges
col_vect_sim <- c('#fdbe85','#fd8d3c','#e6550d','#a63603')
### plot time series for multiple sites
### Temperature (first list entry)
par(mfrow=c(2,1),mar=c(3,3,2,1))
### determine ylim
ylim_max <- max(sim[[1]][[1]]$Temp)*1.5
### observed
plot(sim[[1]][[1]]$Temp[1:1000],
ylab=expression(bold(paste("Temperature [degrees]"))),
xlab="Time [d]",type="l",col=col_vect_obs[1],
ylim=c(0,ylim_max),main='Observations')
for(l in 2){
lines(sim[[l]][[1]]$Temp[1:1000],col=col_vect_obs[l])
}
# legend('topleft',legend=c('Station 1','Station 2'
# ),lty=1,col=col_vect_obs[1:2])
### simulated (one run)
plot(sim[[1]][[1]]$r1[1:1000],
ylab=expression(bold(paste("Temperature [degrees]"))),
xlab="Time [d]",type="l",col=col_vect_sim[1],
ylim=c(0,ylim_max),main='Stochastic simulations')
for(l in 2){
lines(sim[[l]][[1]]$r1[1:1000],col=col_vect_sim[l])
}
### precipitation (second list entry)
ylim_max <- max(sim[[1]][[2]]$Prec)*1
### observed
plot(sim[[1]][[2]]$Prec[1:1000],
ylab=expression(bold(paste("Precipitation [mm/d]"))),
xlab="Time [d]",type="l",col=col_vect_obs[1],
ylim=c(0,ylim_max),main='Observations')
for(l in 2){
lines(sim[[l]][[2]]$Prec[1:1000],col=col_vect_obs[l])
}
# legend('topleft',legend=c('Station 1','Station 2'
# ),lty=1,col=col_vect_obs[1:2])
### simulated (one run)
plot(sim[[1]][[2]]$r1[1:1000],
ylab=expression(bold(paste("Precipitation [mm/d]"))),
xlab="Time [d]",type="l",col=col_vect_sim[1],
ylim=c(0,ylim_max),main='Stochastic simulations')
for(l in 2){
lines(sim[[l]][[2]]$r1[1:1000],col=col_vect_sim[l])
}
par(oldpar)