| simulations_multi_sites {PRSim} | R Documentation |
Simulated runoff for four catchments
Description
The dataset is generated with the package own routines and represent 5 series of 38 years of runoff for four catchments
Usage
data("simulations_multi_sites")
Format
A list of four elements (one per catchment), containing a data frame each holding information about the observed time series and the stochastic simulations
YYYYa numeric vector, year
MMa numeric vector, month
DDa numeric vector, day
timestampPOSIXctvector of the daily runoffQobsobserved runoff
r1,...,r55 simulated runoff series
Details
The data is included to illustrate the validation and visualization routines in demo("PRSim_wave-validate").
Source
The data has been generated with
prsim.wave(data=runoff_multi_sites, number_sim=5, marginal="kappa",
GoFtest = NULL,pars=NULL, p_val=NULL)
(default values for all other arguments).
References
Brunner, M. I., A. Bárdossy, and R. Furrer (2019). Technical note: Stochastic simulation of streamflow time series using phase randomization. Hydrology and Earth System Sciences, 23, 3175-3187, https://doi.org/10.5194/hess-23-3175-2019.
Examples
oldpar <- par(mfrow = c(2, 1), mar = c(3, 3, 2, 1))
### greys
col_vect_obs <- c('#cccccc','#969696','#636363','#252525')
### oranges
col_vect_sim <- c('#fdbe85','#fd8d3c','#e6550d','#a63603')
data(simulations_multi_sites)
sim <- simulations_multi_sites
dim(sim[[1]])
### plot time series for multiple sites
par(mfrow=c(2,1),mar=c(3,3,2,1))
### determine ylim
ylim_max <- max(sim[[1]]$Qobs)*1.5
### observed
plot(sim[[1]]$Qobs[1:1000],
ylab=expression(bold(
paste("Specific discharge [mm/d]"))),
xlab="Time [d]",type="l",col=col_vect_obs[1],
ylim=c(0,ylim_max),main='Observations')
for(l in 2:4){
lines(sim[[l]]$Qobs[1:1000],col=col_vect_obs[l])
}
legend('topleft',legend=c('Station 1','Station 2',
'Station 3','Station 4'),
lty=1,col=col_vect_obs[1:4])
### simulated (one run)
plot(sim[[1]]$r1[1:1000],
ylab=expression(bold(paste("Specific discharge [mm/d]"))),
xlab="Time [d]",type="l",col=col_vect_sim[1],
ylim=c(0,ylim_max),
main='Stochastic simulations')
for(l in 2:4){
lines(sim[[l]]$r1[1:1000],col=col_vect_sim[l])
}
par(oldpar)