| simulations {PRSim} | R Documentation |
Simulated runoff
Description
The dataset is generated with the package own routines and represent 5 series of 18 years of runoff
Usage
data("simulations")
Format
A list of three elements, containing (i) a data frame with 6570 observations of the following variables
YYYYa numeric vector, year
MMa numeric vector, month
DDa numeric vector, day
timestampPOSIXctvector of the daily runoffdeseasonalizeddeseasonalized time series
Qobsobserved runoff
r1,...,r55 simulated runoff series
(ii) a data frame with the daily fitted kappa parameters and (iii) p-values of the daily ks.test.
Details
The data is included to illustrate the validation and visualization routines in demo("PRSim-validate").
Source
The data has been generated with
set.seed(14); prsim( runoff[ runoff$YYYY>1999,], number_sim=5,
KStest=TRUE)
(default values for all other arguments).
References
Brunner, M. I., A. Bárdossy, and R. Furrer (2019). Technical note: Stochastic simulation of streamflow time series using phase randomization. Hydrology and Earth System Sciences, 23, 3175-3187, https://doi.org/10.5194/hess-23-3175-2019.
Examples
data(simulations)
names(simulations)
sim <- simulations$simulation
dim(sim)
sim$day_id <- rep(seq(1:365), times=length(unique(sim$YYYY)))
mean_obs <- aggregate(sim$Qobs, by=list(sim$day_id), FUN=mean, simplify=FALSE)
plot(unlist(mean_obs[,2]),lty=1,lwd=1,col="black", ylab="Discharge [m3/s]",
xlab="Time [d]", main="Mean hydrographs", ylim=c(0,22), type="l")
for(r in 7:(length(names(sim))-1)){
mean_hydrograph <- aggregate(sim[,r], by=list(sim$day_id), FUN=mean, simplify=FALSE)
lines(mean_hydrograph, lty=1, lwd=1, col="gray")
}
lines( mean_obs, lty=1, lwd=1, col="black")