PRS_PGx_Bayes {PRSPGx} | R Documentation |
Construct PGx PRS using Bayesian regression
Description
Flexibly shrink prognostic and predictive effect sizes simutaneously with glocal-local shrinkage parameters
Usage
PRS_PGx_Bayes(
PGx_GWAS,
G_reference,
n.itr = 1000,
n.burnin = 500,
n.gap = 10,
paras,
standardize = TRUE
)
Arguments
PGx_GWAS |
a numeric list containing PGx GWAS summary statistics (with SNP ID, position, |
G_reference |
a numeric matrix containing the individual-level genotype information from the reference panel (e.g., 1KG) |
n.itr |
a numeric value indicating the total number of MCMC iteration |
n.burnin |
a numeric value indicating the number of burn in |
n.gap |
a numeric value indicating the MCMC gap |
paras |
a numeric vector containg hyper-parameters ( |
standardize |
a logical flag indicating should phenotype and genotype be standardized |
Details
PRS-PGx-Bayes only needs PGx summary statistics and external reference genotype
Value
A numeric list, the first sublist contains estimated prognostic effect sizes, the second sublist contains estimated predictive effect sizes
Author(s)
Song Zhai
References
Ge, T., Chen, CY., Ni, Y. et al. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).
Zhai, S., Zhang, H., Mehrotra, D.V. & Shen, J. Paradigm Shift from Disease PRS to PGx PRS for Drug Response Prediction using PRS-PGx Methods (submitted).
Examples
data(PRSPGx.example); attach(PRSPGx.example)
paras = c(3, 5)
coef_est <- PRS_PGx_Bayes(PGx_GWAS, G_reference, paras = paras, n.itr = 10, n.burnin = 5, n.gap = 1)
summary(coef_est$coef.G)
summary(coef_est$coef.TG)