prior_prp {PRP} | R Documentation |
Prior Predictive Replication p-value Calculation
Description
Assessing the prior predictive distribution and calculating the replication p-value based on it.
Usage
prior_prp(
beta,
se,
r_vec = c(0, 8e-04, 0.006, 0.024),
test = "two_sided",
report_PI = FALSE
)
Arguments
beta |
A 2-D vector, containing the estimates in the original study and the replication study. |
se |
A 2-D vector, containing the standard errors of the estimates in the original study and the replication study. |
r_vec |
A vector, defining the prior reproducible model. Each r value corresponds to a probability of sign consistency. |
test |
A string, determining which test statistics to utilize. If not specified, the default two-sided one will be used. |
report_PI |
A boolean, denoting whether the 95% predictive interval for the estimates be reported or not. This option is only valid for two-sided test statistics. The default is FALSE. |
Value
A list with the following components:
grid |
The detailed grid values for the hyperparameters. |
test_statistics |
The test statistics used in calculating the replication p-value. |
pvalue |
The resulting prior predictive replicaiton p-value. |
predictive_interval |
The 95% predictive interval if required. |
Examples
data("RPP_filtered")
attach(RPP_filtered)
rpp_pval<-sapply(1:nrow(RPP_filtered),function(x)
prior_prp(beta=c(beta_orig[x], beta_rep[x]),se=c(se_orig[x], se_rep[x]))$pvalue)