posterior_prp {PRP} | R Documentation |
Posterior Predictive Replication p-value Calculation
Description
Posterior Predictive Replication p-value Calculation
Usage
posterior_prp(
beta,
se,
L = 1000,
r_vec = c(0, 8e-04, 0.006, 0.024),
test = Q,
print_test_dist = FALSE
)
Arguments
beta |
A vector, containing the estimates in the original study and the replication study. |
se |
A vector, containing the standard errors of the estimates in the original study and the replication study. |
L |
A value, determining the times of repeating simulation. |
r_vec |
A vector, defining the prior reproducible model. Each r value corresponds to a probability of sign consistency. |
test |
A function designed to calculate the test quantity, the default one is the Cochran's Q test statistics. |
print_test_dist |
A boolean, determining whether the simulated test statistics value difference will be plot as a histogram or not. Default is False. |
Value
A list with the following components:
grid |
Detailed grid values for the hyperparameters. |
test_statistics |
The test statistics used in calculating the replication p-value. |
n_sim |
The L value. |
test_stats_dif |
The difference between the simulated test statistics quantity and the original value. |
pvalue |
The resulting posterior predictive replicaiton p-value. |
Examples
data("mortality")
res = posterior_prp(beta = mortality$beta, se = mortality$se, test=Q)
names(res)
print(res$pvalue)