PPS-method {PPSFS} | R Documentation |
Partial Profile Score Feature Selection for GLMs
Description
ppsfs
: PPSFS for main-effects.
ppsfsi
: PPSFS for interaction effects.
Usage
ppsfs(
x,
y,
family,
keep = NULL,
I0 = NULL,
...,
ebicFlag = 1,
maxK = min(NROW(x) - 1, NCOL(x) + length(I0)),
verbose = FALSE
)
ppsfsi(
x,
y,
family,
keep = NULL,
...,
ebicFlag = 1,
maxK = min(NROW(x) - 1, choose(NCOL(x), 2)),
verbose = FALSE
)
Arguments
x |
Matrix. |
y |
Vector. |
family |
|
keep |
Initial set of features that are included in model fitting. |
I0 |
Index set of interaction effects to be identified. |
... |
Additional parameters for glm.fit. |
ebicFlag |
The procedure stops when the EBIC increases after |
maxK |
Maximum number of identified features. |
verbose |
Print the procedure path? |
Details
That ppsfs(x, y, family="gaussian")
is an implementation to
sequential lasso method proposed by Luo and Chen doi: 10/f6kfr6.
Value
Index set of identified features.
References
Z. Xu, S. Luo and Z. Chen (2022). Partial profile score feature selection in high-dimensional generalized linear interaction models. Statistics and Its Interface. doi: 10.4310/21-SII706
Examples
## ***************************************************
## Identify main-effect features
## ***************************************************
set.seed(2022)
n <- 300
p <- 1000
x <- matrix(rnorm(n*p), n)
eta <- drop( x[, 1:3] %*% runif(3, 1.0, 1.5) )
y <- eta + rnorm(n, sd=sd(eta)/5)
print( A <- ppsfs(x, y, 'gaussian', verbose=TRUE) )
## ***************************************************
## Identify interaction effects
## ***************************************************
set.seed(2022)
n <- 300
p <- 150
x <- matrix(rnorm(n*p), n)
eta <- drop( cbind(x[, 1:3], x[, 4:6]*x[, 7:9]) %*% runif(6, 1.0, 1.5) )
y <- eta + rnorm(n, sd=sd(eta)/5)
print( group <- ppsfsi(x, y, 'gaussian', verbose=TRUE) )
print( A <- ppsfs(x, y, "gaussian", I0=group, verbose=TRUE) )
print( A <- ppsfs(x, y, "gaussian", keep=c(1, "5:8"),
I0=group, verbose=TRUE) )
[Package PPSFS version 0.1.0 Index]