WolframRule90 {PPRL}R Documentation

Apply Wolframs rule 90 on bit vectors

Description

Apply Wolframs Cellular Automaton rule 90 on the input bit vectors.

Usage

WolframRule90(ID, data,  lenBloom, t)

Arguments

ID

IDs as character vector.

data

character vector containing bit vectors.

lenBloom

length of Bloom filters.

t

indicates how often rule 90 is to be used.

Value

Returns a character vector with new bit vectors after rule 90 has been applied t times.

References

https://en.wikipedia.org/wiki/Rule_90

Martin, O., Odlyzko, A. M., Wolfram, S. (1984): Algebraic properties of cellular automata. Communications in Mathematical Physics, 93 (2): 219-258.

Schnell, R. (2017): Recent Developments in Bloom Filter-based Methods for Privacy-preserving Record Linkage. Curtin Institute for Computation, Curtin University, Perth, 12.9.2017.

Wolfram, S. (1983): Statistical mechanics of cellular automata. Rev. Mod. Phys. 55 (3): 601–644.

See Also

WolframRule30

Examples

# Load test data
testFile <- file.path(path.package("PPRL"), "extdata/testdata.csv")
testData <- read.csv(testFile, head = FALSE, sep = "\t",
  colClasses = "character")

# Create bit vector e.g. by CreateCLK or CreateBF
CLK <- CreateCLK(ID = testData$V1, 
  data = testData[, c(2, 3, 7, 8)],
  k = 20, padding = c(0, 0, 1, 1), 
  q = c(1, 1, 2, 2), l = 1000, 
  password = c("HUh4q", "lkjg", "klh", "Klk5"))

# Apply rule 90 once  
res <- WolframRule90(CLK$ID, CLK$CLK, lenBloom = 1000, t = 1)


[Package PPRL version 0.3.8 Index]