WolframRule30 {PPRL} | R Documentation |
Apply Wolframs rule 30 on bit vectors
Description
Apply Wolframs Cellular Automaton rule 30 on the input bit vectors.
Usage
WolframRule30(ID, data, lenBloom, t)
Arguments
ID |
IDs as character vector. |
data |
character vector containing bit vectors. |
lenBloom |
length of Bloom filters. |
t |
indicates how often rule 30 is to be used. |
Value
Returns a character vector with new bit vectors after rule 30 has been applied t times.
References
https://en.wikipedia.org/wiki/Rule_30
Schnell, R. (2017): Recent Developments in Bloom Filter-based Methods for Privacy-preserving Record Linkage. Curtin Institute for Computation, Curtin University, Perth, 12.9.2017.
Wolfram, S. (1983): Statistical mechanics of cellular automata. Rev. Mod. Phys. 55 (3): 601–644.
See Also
Examples
# Load test data
testFile <- file.path(path.package("PPRL"), "extdata/testdata.csv")
testData <- read.csv(testFile, head = FALSE, sep = "\t",
colClasses = "character")
# Create bit vector e.g. by CreateCLK or CreateBF
CLK <- CreateCLK(ID = testData$V1,
data = testData[, c(2, 3, 7, 8)],
k = 20, padding = c(0, 0, 1, 1),
q = c(1, 1, 2, 2), l = 1000,
password = c("HUh4q", "lkjg", "klh", "Klk5"))
# Apply rule 30 once
res <- WolframRule30(CLK$ID, CLK$CLK, lenBloom = 1000, t = 1)
[Package PPRL version 0.3.8 Index]