| kdens {PPMiss} | R Documentation |
Kernel density estimator
Description
The probability density function F' is estimated using a kernel density
approach. More specifically, first y_i = \hat{f}(x_i^\ast) is estimated
using T = 512 (default for the function density)
equally spaced points x_i^\ast, 1 \leq i \leq T, in the interval
[x_{(1)} - 3b, x_{(n)} + 3b], where b is the bandwidth for
the Gaussian kernel density estimator, chosen by applying the Silverman's
rule of thumb (the default procedure in density).
A cubic spline interpolation (the default method for spline)
is then applied to the pairs \{(x_i^\ast, y_i)\}_{i=1}^T to obtain
\hat F_n'(x) for all x \in [x_{(1)} - 3b, x_{(n)} + 3b].
Usage
kdens(x)
Arguments
x |
the data from which the estimate is to be computed. |
Value
a function that approximates the probability density function.
Examples
# creating a time series
trunc = 50000
cks <- arfima.coefs(d = 0.25, trunc = trunc)
eps <- rnorm(trunc+1000)
x <- sapply(1:1000, function(t) sum(cks*rev(eps[t:(t+trunc)])))
# kernel density function
dfun <- kdens(x)
# plot
curve(dfun, from = min(x), to = max(x))
[Package PPMiss version 0.1.1 Index]