ProgPredLasso {PPLasso} | R Documentation |
Identification of prognostic and predictive biomarkers
Description
The computes the regularization path of the Prognostic Predictive Lasso described in the paper Zhu et al. (2022) given in the references.
Usage
ProgPredLasso(X1, X2, Y=Y, cor_matrix=NULL, gamma=0.99, maxsteps=500, lambda='single')
Arguments
X1 |
Design matrix of patients characteristics with treatment 1 |
X2 |
Design matrix of patients characteristics with treatment 2 |
Y |
Response variable |
cor_matrix |
Correlation matrix of biomarkers. If not specified, the function |
gamma |
Parameter |
maxsteps |
Integer specifying the maximum number of steps for the generalized Lasso algorithm. Its default value is 500. |
lambda |
Using single tuning parameter or both. |
Value
Returns a list with the following components
lambda |
different values of the parameter |
beta |
matrix of the estimations of |
beta.min |
estimation of |
bic |
BIC for all the |
mse |
MSE for all the |
Author(s)
Wencan Zhu, Celine Levy-Leduc, Nils Ternes