PPLasso-package {PPLasso} | R Documentation |
Prognostic Predictive Lasso for Biomarker Selection
Description
We provide new tools for the identification of prognostic and predictive biomarkers. For further details we refer the reader to the paper: Zhu et al. Identification of prognostic and predictive biomarkers in high-dimensional data with PPLasso. BMC Bioinformatics. 2023 Jan 23;24(1):25.
Details
The DESCRIPTION file:
Package: | PPLasso |
Type: | Package |
Title: | Prognostic Predictive Lasso for Biomarker Selection |
Version: | 2.0 |
Date: | 2023-02-26 |
Authors@R: | c(person("Wencan", "Zhu", email = "wencan.zhu@agroparistech.fr", role = c("aut", "cre")), person("Celine","Levy-Leduc", email="celine.levy-leduc@agroparistech.fr", role = "ctb"), person("Nils", "Ternes", email="Nils.Ternes@sanofi.com", role = "ctb")) |
Author: | Wencan Zhu [aut, cre], Celine Levy-Leduc [ctb], Nils Ternes [ctb] |
Maintainer: | Wencan Zhu <wencan.zhu@agroparistech.fr> |
Description: | We provide new tools for the identification of prognostic and predictive biomarkers. For further details we refer the reader to the paper: Zhu et al. Identification of prognostic and predictive biomarkers in high-dimensional data with PPLasso. BMC Bioinformatics. 2023 Jan 23;24(1):25. |
License: | GPL-2 |
Imports: | genlasso, ggplot2, cvCovEst, glmnet, MASS |
VignetteBuilder: | knitr |
Suggests: | knitr, rmarkdown |
NeedsCompilation: | no |
Packaged: | 2023-02-26 08:33:08 UTC; Wencan |
Depends: | R (>= 3.5.0) |
Index of help topics:
Correction1Vect Correction on two vectors Correction2Vect Correction on two vectors PPLasso-package Prognostic Predictive Lasso for Biomarker Selection ProgPredLasso Identification of prognostic and predictive biomarkers top Thresholding to 0 top_thresh Thresholding to a given threshold of the smallest values
This package provide usufull tool for the identification of prognostics and predictive biomarkers.
Author(s)
Wencan Zhu [aut, cre], Celine Levy-Leduc [ctb], Nils Ternes [ctb]
Maintainer: Wencan Zhu <wencan.zhu@agroparistech.fr>
References
W. Zhu, C. Levy-Leduc, N. Ternes. "A variable selection approach for highly correlated predictors in high-dimensional genomic data". (2020)
[Package PPLasso version 2.0 Index]