Profiled Confidence Intervals {POT} | R Documentation |
Profiled Confidence interval for the GP Distribution
Description
Compute profiled confidence intervals on parameter and return level for the GP distribution. This is achieved through the profile likelihood procedure.
Usage
gpd.pfshape(object, range, xlab, ylab, conf = 0.95, nrang = 100,
vert.lines = TRUE, ...)
gpd.pfscale(object, range, xlab, ylab, conf = 0.95, nrang = 100,
vert.lines = TRUE, ...)
gpd.pfrl(object, prob, range, thresh, xlab, ylab, conf = 0.95, nrang =
100, vert.lines = TRUE, ...)
Arguments
object |
|
prob |
The probability of non exceedance. |
range |
Vector of dimension two. It gives the lower and upper bound on which the profile likelihood is performed. |
thresh |
Optional. The threshold. Only needed with non constant threshold. |
xlab , ylab |
Optional Strings. Allows to label the x-axis and y-axis. If missing, default value are considered. |
conf |
Numeric. The confidence level. |
nrang |
Numeric. It specifies the number of profile likelihood
computed on the whole range |
vert.lines |
Logical. If |
... |
Optional parameters to be passed to the
|
Value
Returns a vector of the lower and upper bound for the profile confidence interval. Moreover, a graphic of the profile likelihood function is displayed.
Author(s)
Mathieu Ribatet
References
Coles, S. (2001). An Introduction to Statistical Modelling of Extreme Values. Springer Series in Statistics. London.
See Also
gpd.fiscale
, gpd.fishape
,
gpd.firl
and confint
Examples
data(ardieres)
events <- clust(ardieres, u = 4, tim.cond = 8 / 365,
clust.max = TRUE)
MLE <- fitgpd(events[, "obs"], 4, 'mle')
gpd.pfshape(MLE, c(0, 0.8))
rp2prob(10, 2)
gpd.pfrl(MLE, 0.95, c(12, 25))