optim_est {POPInf} | R Documentation |
Gradient descent for obtaining estimator
Description
optim_est
function for gradient descent for obtaining estimator
Usage
optim_est(
X_lab,
X_unlab,
Y_lab,
Yhat_lab,
Yhat_unlab,
w,
theta,
quant = NA,
method,
step_size = 0.1,
max_iterations = 500,
convergence_threshold = 1e-06
)
Arguments
X_lab |
Array or DataFrame containing observed covariates in labeled data. |
X_unlab |
Array or DataFrame containing observed or predicted covariates in unlabeled data. |
Y_lab |
Array or DataFrame of observed outcomes in labeled data. |
Yhat_lab |
Array or DataFrame of predicted outcomes in labeled data. |
Yhat_unlab |
Array or DataFrame of predicted outcomes in unlabeled data. |
w |
weights vector POP-Inf linear regression (d-dimensional, where d equals the number of covariates). |
theta |
parameter theta |
quant |
quantile for quantile estimation |
method |
indicates the method to be used for M-estimation. Options include "mean", "quantile", "ols", "logistic", and "poisson". |
step_size |
step size for gradient descent |
max_iterations |
maximum of iterations for gradient descent |
convergence_threshold |
convergence threshold for gradient descent |
Value
estimator