point {POINT} | R Documentation |
Protein Structure Guided Local Test
Description
A rare variant association test that utilizes protein tertiary structure to increase signal and to identify likely causal variants. Performs structure-guided collapsing, which leads to local tests that borrow information from neighboring variants on a protein and that provide association information on a variant-specific level.
Usage
point(
yy,
X,
snp,
proteinCoord,
...,
trait = "binomial",
cValues = c(0, 0.1, 0.2, 0.3, 0.4, 0.5),
weighted = TRUE,
weight = NULL,
kernel = "linear",
d = NULL,
pvMethod = "davies",
nperturb = 1000,
verbose = TRUE
)
Arguments
yy |
numeric vector; phenotype values. |
X |
numeric matrix; non-genetic covariates. |
snp |
numeric matrix; genotype snp matrix (count of minor alleles). Matrix cannot contain missing values. |
proteinCoord |
numeric matrix; columns correspond to 3 dimensional coordinates (x,y,z) of each variant in the protein tertiary structure. |
... |
optional additional arguments for p-value methods CompQuadForm::davies and CompQuadForm::liu. |
trait |
character; type of phenotype data. Must be one of {'gaussian','binomial'} quantitative or case control data, respectively. |
cValues |
numeric vector; c values from which to choose the optimal neighborhood size for borrowing significant information. |
weighted |
logical; whether or not to weight the local kernel test using (non-distance based) weights. |
weight |
numeric vector (optional) If NULL and weighted is TRUE (1.0-MAF)^24. Ignored if weighted is FALSE. |
kernel |
character; type of local kernel to use; Must be one of {'burden', 'linear', 'polynomial'}. |
d |
numeric; If kernel = 'poly', d is the order of the polynomial kernel. |
pvMethod |
character; method of calculating the p-value of each single marker test for fixed c values. Must be one of {'davies', 'liu'}. |
nperturb |
numeric, number of perturbations/resamples (perturbed test statistics) to calculate p-value of minP statistic. |
verbose |
logical; generate progress screen prints. |
Value
Returns a matrix the rows of which correspond to individual markers.
Columns correspond to:
(1) minP statistic;
(2) local kernel test p-value;
(3) optimal scale value from input cValues;
(4) minor allele frequency; and
(5) single variant score test p-value.
Examples
# number of subjects
nsubj <- 1000
# number of markers
nm <- 5
# generate coordinates for proteins
protein <- cbind( stats::rnorm(n = nm, mean = 17.6, sd = 6.6),
stats::rnorm(n = nm, mean = 1.6, sd = 13.6),
stats::rnorm(n = nm, mean = 22.9, sd = 10.4) )
# generate snp matrix
snp <- matrix(data = rbinom(n = nsubj*nm, size = 1, p = 0.02),
nrow = nsubj, ncol = nm)
colnames(snp) = paste0("m",1:nm)
# generate binmoial response
MAF <- colMeans(x = snp)/2
causal <- numeric(nm)
causal[c(2,4)] <- 1.0
betaG <- 0.4*abs(log10(x = MAF))*causal
#no non-genetic covariates
X <- NULL
mu <- -0.05 + snp %*% betaG
pryy <- exp(mu)/(1+exp(mu))
yy <- sapply(X = pryy, FUN = stats::rbinom, n = 1, size = 1)
res <- point(yy = yy, X = X, snp = snp, proteinCoord = protein,
trait = 'binomial', cValues = c(0.1,0.2),
weighted = TRUE, weight = NULL, kernel = 'linear',
pvMethod = 'liu', nperturb = 100,
verbose = FALSE)