selectmodel {POCRE} | R Documentation |
Select the Optimal Model
Description
Select the optimal model from those fitted by POCRE, on the basis of prespecified criterion, such as EBIC, BIC, AIC, and AICc.
Usage
selectmodel(ppobj, msc=NULL)
Arguments
ppobj |
output from pocrepath. |
msc |
a value indicating the information criterion: 0 for BIC, (0,1] for EBIC (by default), 2 for AIC, 3 for AICc. |
Value
output of pocre for the optimal model.
Author(s)
Dabao Zhang, Zhongli Jiang, Zeyu Zhang, Department of Statistics, Purdue University
References
Chen J and Chen Z (2008) Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95: 759-771.
Zhang D, Lin Y, and Zhang M (2009). Penalized orthogonal-components regression for large p small n data. Electronic Journal of Statistics, 3: 781-796.
See Also
Examples
data(simdata)
xx <- scale(as.matrix(simdata[,-1]))
yy <- scale(as.matrix(simdata[,1]))
# ppres <- pocrepath(yy,xx,delta=0.01)
ppres <- pocrepath(yy,xx)
fres <- selectmodel(ppres)
[Package POCRE version 0.6.0 Index]