| PLregcontrol {PLreg} | R Documentation |
Auxiliary for Controlling PL Fitting
Description
Parameters that control fitting of power logit regression models using PLreg.
Usage
PLreg.control(
lambda = NULL,
method = "BFGS",
maxit = 2000,
trace = FALSE,
start = NULL,
...
)
Arguments
lambda |
numeric indicating the value of the skewness parameter lambda (if |
method |
character specifying the |
maxit, trace, ... |
arguments passed to |
start |
an optional vector with starting values for median and dispersion submodels (starting value for lambda must not be included). |
Details
The PLreg.control controls the fitting process of power logit models. Almost all the arguments
are passed on directly to optim, which is used to estimate the parameters.
Starting values for median and dispersion submodels may be supplied via start. If the
estimation process is to be performed with a fixed skewness parameter, a value must be specified
in lambda. If lambda = 0, a log-log regression model
will be estimated.
Value
A list with components named as the arguments.
See Also
Examples
data("PeruVotes")
fitPL <- PLreg(votes ~ HDI | HDI, data = PeruVotes,
family = "TF", zeta = 5, control = PLreg.control(lambda = 1))
summary(fitPL)