predict.pls {PLSiMCpp} | R Documentation |
Predict according to the Estimated Parameters
Description
Predict Y based on new observations.
Usage
## S3 method for class 'pls'
predict(object, x_test = NULL, z_test, ...)
Arguments
object |
fitted partially linear single-index model, which could be obtained by |
x_test |
input matrix (linear covariates of test set). |
z_test |
input matrix (nonlinear covariates of test set). |
... |
additional arguments. plsim.MAVE, or plsim.est, or plsim.vs.soft. |
Value
y_hat |
prediction. |
Examples
n = 50
sigma = 0.1
alpha = matrix(1, 2, 1)
alpha = alpha/norm(alpha, "2")
beta = matrix(4, 1, 1)
x = matrix(1, n, 1)
x_test = matrix(1,n,1)
z = matrix(runif(n*2), n, 2)
z_test = matrix(runif(n*2), n, 2)
y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1)
y_test = 4*((z_test%*%alpha-1/sqrt(2))^2) + x_test%*%beta + sigma*matrix(rnorm(n),n,1)
# Obtain parameters in PLSiM using Profile Least Squares Estimator
fit_plsimest = plsim.est(x, z, y)
preds_plsimest = predict(fit_plsimest, x_test, z_test)
# Print the MSE of the Profile Least Squares Estimator method
print( sum( (preds_plsimest-y_test)^2)/nrow(y_test) )
# Obtain parameters in PLSiM using Penalized Profile Least Squares Estimator
fit_plsim = plsim.vs.soft(x, z, y,lambda = 0.01)
preds_plsim = predict(fit_plsim, x_test, z_test)
# Print the MSE of the Penalized Profile Least Squares Estimator method
print( sum( (preds_plsim-y_test)^2)/nrow(y_test) )
[Package PLSiMCpp version 1.0.4 Index]