plsim.vs.soft {PLSiMCpp} | R Documentation |
Penalized Profile Least Squares Estimator
Description
PPLS along with introducing penalty terms so as to simultaneously estimate parameters and select important variables in PLSiM
Y = \eta(Z^T\alpha) + X^T\beta + \epsilon
.
Usage
plsim.vs.soft(...)
## S3 method for class 'formula'
plsim.vs.soft(formula, data, ...)
## Default S3 method:
plsim.vs.soft(xdat=NULL, zdat, ydat, h=NULL, zetaini=NULL,
lambda=0.01, l1_ratio=NULL, MaxStep = 1L, penalty = "SCAD", verbose=TRUE,
ParmaSelMethod="SimpleValidation", TestRatio=0.1, K = 3, seed=0, ...)
Arguments
... |
additional arguments. |
formula |
a symbolic description of the model to be fitted. |
data |
an optional data frame, list or environment containing the variables in the model. |
xdat |
input matrix (linear covariates). The model reduces to a single index model when |
zdat |
input matrix (nonlinear covariates). |
ydat |
input vector (response variable). |
h |
a value or a vector for bandwidth. If |
zetaini |
initial coefficients, optional (default: NULL). It could be obtained by the function |
MaxStep |
int, optional (default=1). Hard limit on iterations within solver. |
lambda |
double. Constant that multiplies the penalty term. |
l1_ratio |
double, default=NULL. It should be set with a value from the range |
penalty |
string, optional (default="SCAD"). It could be "SCAD", "LASSO" and "ElasticNet". |
verbose |
bool, default: TRUE. Enable verbose output. |
ParmaSelMethod |
the parameter for the function plsim.bw. |
TestRatio |
the parameter for the function plsim.bw. |
K |
the parameter for the function plsim.vs.soft. |
seed |
int, default: 0. |
Value
eta |
estimated non-parametric part |
zeta |
estimated coefficients. |
y_hat |
|
mse |
mean squared errors between y and |
data |
data information including |
Z_alpha |
|
r_square |
multiple correlation coefficient. |
variance |
variance of |
stdzeta |
standard error of |
References
H. Liang, X. Liu, R. Li, C. L. Tsai. Estimation and testing for partially linear single-index models. Annals of statistics, 2010, 38(6): 3811.
Examples
# EXAMPLE 1 (INTERFACE=FORMULA)
# To estimate parameters of partially linear single-index model and select
# variables using different penalization methods such as SCAD, LASSO, ElasticNet.
n = 50
sigma = 0.1
alpha = matrix(1,2,1)
alpha = alpha/norm(alpha,"2")
beta = matrix(4,1,1)
# Case 1: Matrix Input
x = matrix(1,n,1)
z = matrix(runif(n*2),n,2)
y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1)
# Compute the penalized profile least-squares estimator with the SCAD penalty
fit_scad = plsim.vs.soft(y~x|z,lambda = 0.01)
summary(fit_scad)
# Compute the penalized profile least-squares estimator with the LASSO penalty
fit_lasso = plsim.vs.soft(y~x|z,lambda = 1e-3, penalty = "LASSO")
summary(fit_lasso)
# Compute the penalized profile least-squares estimator with the ElasticNet penalty
fit_enet = plsim.vs.soft(y~x|z,lambda = 1e-3, penalty = "ElasticNet")
summary(fit_enet)
# Case 2: Vector Input
x = rep(1,n)
z1 = runif(n)
z2 = runif(n)
y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1)
# Compute the penalized profile least-squares estimator with the SCAD penalty
fit_scad = plsim.vs.soft(y~x|z1+z2,lambda = 0.01)
summary(fit_scad)
# Compute the penalized profile least-squares estimator with the LASSO penalty
fit_lasso = plsim.vs.soft(y~x|z1+z2,lambda = 1e-3, penalty = "LASSO")
summary(fit_lasso)
# Compute the penalized profile least-squares estimator with the ElasticNet penalty
fit_enet = plsim.vs.soft(y~x|z1+z2,lambda = 1e-3, penalty = "ElasticNet")
summary(fit_enet)
# EXAMPLE 2 (INTERFACE=DATA FRAME)
# To estimate parameters of partially linear single-index model and select
# variables using different penalization methods such as SCAD, LASSO, ElasticNet.
n = 50
sigma = 0.1
alpha = matrix(1,2,1)
alpha = alpha/norm(alpha,"2")
beta = matrix(4,1,1)
x = rep(1,n)
z1 = runif(n)
z2 = runif(n)
X = data.frame(x)
Z = data.frame(z1,z2)
x = data.matrix(X)
z = data.matrix(Z)
y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1)
# Compute the penalized profile least-squares estimator with the SCAD penalty
fit_scad = plsim.vs.soft(xdat=X,zdat=Z,ydat=y,lambda = 0.01)
summary(fit_scad)
# Compute the penalized profile least-squares estimator with the LASSO penalty
fit_lasso = plsim.vs.soft(xdat=X,zdat=Z,ydat=y,lambda = 1e-3, penalty = "LASSO")
summary(fit_lasso)
# Compute the penalized profile least-squares estimator with the ElasticNet penalty
fit_enet = plsim.vs.soft(xdat=X,zdat=Z,ydat=y,lambda = 1e-3, penalty = "ElasticNet")
summary(fit_enet)