| plsim.pTest {PLSiMCpp} | R Documentation | 
Testing Parametric Components
Description
Test whether some elements of \alpha and \beta are zero, that is,
H_0: \alpha_{i_1}=\cdots=\alpha_{i_k}=0 \ \mbox{ and } \beta_{j_1}=\cdots=\beta_{j_l}=0
versus
H_1: \mbox{not \ all }\ \alpha_{i_1},\cdots,\alpha_{i_k}  \ \mbox{ and } \beta_{j_1}, \cdots,\beta_{j_l} \ \mbox{ are equal to }\ 0.
Usage
plsim.pTest(fit, parameterSelected = NULL, TargetMethod = "plsimest")
Arguments
| fit | the result of function plsim.est or plsim.vs.soft. | 
| parameterSelected | select some coefficients for testing, default: NULL. | 
| TargetMethod | default: "plsim.est". | 
Value
A list with class "htest" containing the following components
| statistic | the value of the test statistic. | 
| parameter | the degree of freedom for the test | 
| p.value | the p-value for the test | 
| method | a character string indicating what type of test was performed | 
| data.name | a character string giving the name of input | 
References
H. Liang, X. Liu, R. Li, C. L. Tsai. Estimation and testing for partially linear single-index models. Annals of statistics, 2010, 38(6): 3811.
Examples
n = 50
sigma = 0.1
alpha = matrix(1,2,1)
alpha = alpha/norm(alpha,"2")
beta = matrix(4,1,1)
x = matrix(1,n,1)
z = matrix(runif(n*2),n,2)
y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1)
# Obtain parameters in PLSiM using Profile Least Squares Estimator
fit_plsimest = plsim.est(x, z, y)
# Test whether the parameters of parametric part estimated by plsimest
# are zero
res_pTest_plsimest = plsim.pTest(fit_plsimest)
# Test whether the second parameter of parametric part estimated by plsimest
# is zero
res_pTest_plsimest_ = plsim.pTest(fit_plsimest,parameterSelected = c(2))
# Obtain parameters in PLSiM using Penalized Profile Least Squares Estimator
# with lambda set as 0.01
fit_plsim = plsim.vs.soft(x,z,y,lambda = 0.01)
# Test whether the parameters of parametric part estimated by plsim are zero
res_pTest_plsim = plsim.pTest(fit_plsim,TargetMethod = "plsim")
# Test whether the second parameter of parametric part estimated by plsim is zero
res_pTest_plsim_ = plsim.pTest(fit_plsim,parameterSelected = c(2),TargetMethod = "plsim")