| plrm.gcv {PLRModels} | R Documentation |
Generalized cross-validation bandwidth selection in PLR models
Description
From a sample {(Y_i, X_{i1}, ..., X_{ip}, t_i): i=1,...,n}, this routine computes an optimal pair of bandwidths for estimating the regression function of the model
Y_i= X_{i1}*\beta_1 +...+ X_{ip}*\beta_p + m(t_i) + \epsilon_i,
where
\beta = (\beta_1,...,\beta_p)
is an unknown vector parameter and
m(.)
is a smooth but unknown function.
The optimal pair of bandwidths, (b.opt, h.opt), is selected by means of the generalized cross-validation procedure. The bandwidth b.opt is used in the estimate of \beta, while the pair of bandwidths (b.opt, h.opt) is considered in the estimate of m. Kernel smoothing, combined with ordinary least squares estimation, is used.
Usage
plrm.gcv(data = data, b.equal.h = TRUE, b.seq=NULL, h.seq=NULL,
num.b = NULL, num.h = NULL, estimator = "NW", kernel = "quadratic")
Arguments
data |
|
b.equal.h |
if TRUE (the default), the same bandwidth is used for estimating both |
b.seq |
sequence of considered bandwidths, |
h.seq |
sequence of considered bandwidths, |
num.b |
number of values used to build the sequence of considered bandwidths for estimating |
num.h |
pairs of bandwidths ( |
estimator |
allows us the choice between “NW” (Nadaraya-Watson) or “LLP” (Local Linear Polynomial). The default is “NW”. |
kernel |
allows us the choice between “gaussian”, “quadratic” (Epanechnikov kernel), “triweight” or “uniform” kernel. The default is “quadratic”. |
Details
The implemented procedure generalizes that one in page 423 in Speckman (1988) by allowing two smoothing parameters instead of only one (see Aneiros-Perez et al., 2004).
Value
bh.opt |
selected value for |
GCV.opt |
minimum value of the GCV function. |
GCV |
matrix containing the values of the GCV function for each pair of bandwidths considered. |
b.seq |
sequence of considered bandwidths, |
h.seq |
sequence of considered bandwidths, |
Author(s)
German Aneiros Perez ganeiros@udc.es
Ana Lopez Cheda ana.lopez.cheda@udc.es
References
Aneiros-Perez, G., Gonzalez-Manteiga, W. and Vieu, P. (2004) Estimation and testing in a partial linear regression under long-memory dependence. Bernoulli 10, 49-78.
Green, P. (1985) Linear models for field trials, smoothing and cross-validation. Biometrika 72, 527-537.
Speckman, P. (1988) Kernel smoothing in partial linear models J. R. Statist. Soc. B 50, 413-436.
See Also
Other related functions are: plrm.beta, plrm.est, plrm.cv, np.est, np.gcv and np.cv.
Examples
# EXAMPLE 1: REAL DATA
data(barnacles1)
data <- as.matrix(barnacles1)
data <- diff(data, 12)
data <- cbind(data,1:nrow(data))
aux <- plrm.gcv(data)
aux$bh.opt
plot(aux$b.seq, aux$GCV, xlab="h", ylab="GCV", type="l")
# EXAMPLE 2: SIMULATED DATA
## Example 2a: independent data
set.seed(1234)
# We generate the data
n <- 100
t <- ((1:n)-0.5)/n
beta <- c(0.05, 0.01)
m <- function(t) {0.25*t*(1-t)}
f <- m(t)
x <- matrix(rnorm(200,0,1), nrow=n)
sum <- x%*%beta
epsilon <- rnorm(n, 0, 0.01)
y <- sum + f + epsilon
data_ind <- matrix(c(y,x,t),nrow=100)
# We obtain the optimal bandwidths
a <-plrm.gcv(data_ind)
a$GCV.opt
GCV <- a$GCV
h <- a$h.seq
plot(h, GCV,type="l")