plrm.ci {PLRModels} | R Documentation |
Confidence intervals estimation in partial linear regression models
Description
This routine obtains a confidence interval for the value a^T * \beta
, by asymptotic distribution and bootstrap, {(Y_i, X_{i1}, ..., X_{ip}, t_i): i=1,...,n}
, where:
a = (a_1,...,a_p)^T
is an unknown vector,
\beta = (\beta_1,...,\beta_p)^T
is an unknown vector parameter and
Y_i= X_{i1}*\beta_1 +...+ X_{ip}*\beta_p + m(t_i) + \epsilon_i.
The nonparametric component, m
, is a smooth but unknown function, and the random errors, \epsilon_i
, are allowed to be time series.
Usage
plrm.ci(data=data, seed=123, CI="AD", B=1000, N=50, a=NULL,
b1=NULL, b2=NULL, estimator="NW",
kernel="quadratic", p.arima=NULL, q.arima=NULL,
p.max=3, q.max=3, alpha=0.05, alpha2=0.05, num.lb=10,
ic="BIC", Var.Cov.eps=NULL)
Arguments
data |
|
seed |
the considered seed. |
CI |
method to obtain the confidence interval. It allows us to choose between: “AD” (asymptotic distribution), “B” (bootstrap) or “all” (both). The default is “AD”. |
B |
number of bootstrap replications. The default is 1000. |
N |
Truncation parameter used in the finite approximation of the MA(infinite) expression of |
a |
Vector which, multiplied by |
b1 |
the considered bandwidth to estimate the confidence interval by asymptotic distribution. If NULL (the default), it is obtained using cross-validation. |
b2 |
the considered bandwidth to estimate the confidence interval by bootstrap. If NULL (the default), it is obtained using cross-validation. |
estimator |
allows us the choice between “NW” (Nadaraya-Watson) or “LLP” (Local Linear Polynomial). The default is “NW”. |
kernel |
allows us the choice between “gaussian”, “quadratic” (Epanechnikov kernel), “triweight” or “uniform” kernel. The default is “quadratic”. |
p.arima |
the considered p to fit the model ARMA(p,q). |
q.arima |
the considered q to fit the model ARMA(p,q). |
p.max |
if |
q.max |
if |
alpha |
1 - |
alpha2 |
significance level used to check (if needed) the ARMA model fitted to the residuals. The default is 0.05. |
num.lb |
if |
ic |
if |
Var.Cov.eps |
|
Value
A list containing:
Bootstrap |
a dataframe containing |
AD |
a dataframe containing |
pv.Box.test |
p-values of the Ljung-Box test for the model fitted to the residuals. |
pv.t.test |
p-values of the t.test for the model fitted to the residuals. |
Author(s)
German Aneiros Perez ganeiros@udc.es
Ana Lopez Cheda ana.lopez.cheda@udc.es
References
Liang, H., Hardle, W., Sommerfeld, V. (2000) Bootstrap approximation in a partially linear regression model. Journal of Statistical Planning and Inference 91, 413-426.
You, J., Zhou, X. (2005) Bootstrap of a semiparametric partially linear model with autoregressive errors. Statistica Sinica 15, 117-133.
See Also
A related functions is par.ci
.
Examples
# EXAMPLE 1: REAL DATA
data(barnacles1)
data <- as.matrix(barnacles1)
data <- diff(data, 12)
data <- cbind(data,1:nrow(data))
b.h <- plrm.gcv(data)$bh.opt
b1 <- b.h[1]
## Not run: plrm.ci(data, b1=b1, b2=b1, a=c(1,0), CI="all")
## Not run: plrm.ci(data, b1=b1, b2=b1, a=c(0,1), CI="all")
# EXAMPLE 2: SIMULATED DATA
## Example 2a: dependent data
set.seed(123)
# We generate the data
n <- 100
t <- ((1:n)-0.5)/n
m <- function(t) {t+0.5}
f <- m(t)
beta <- c(0.5, 2)
x <- matrix(rnorm(200,0,3), nrow=n)
sum <- x%*%beta
sum <- as.matrix(sum)
eps <- arima.sim(list(order = c(1,0,0), ar=0.7), sd = 0.1, n = n)
eps <- as.matrix(eps)
y <- sum + f + eps
data_plrmci <- cbind(y,x,t)
## Not run: plrm.ci(data, a=c(1,0), CI="all")
## Not run: plrm.ci(data, a=c(0,1), CI="all")