plrm.beta {PLRModels} | R Documentation |
Semiparametric estimate for the parametric component of the regression function in PLR models
Description
This routine computes estimates for \beta
from a sample {(Y_i, X_{i1}, ..., X_{ip}, t_i): i=1,...,n}
, where:
\beta = (\beta_1,...,\beta_p)
is an unknown vector parameter and
Y_i= X_{i1}*\beta_1 +...+ X_{ip}*\beta_p + m(t_i) + \epsilon_i.
The nonparametric component, m
, is a smooth but unknown function, and the random errors, \epsilon_i
, are allowed to be time series. Ordinary least squares estimation, combined with kernel smoothing, is used.
Usage
plrm.beta(data = data, b.seq = NULL, estimator = "NW", kernel = "quadratic")
Arguments
data |
|
b.seq |
vector of bandwidths for estimating |
estimator |
allows us the choice between “NW” (Nadaraya-Watson) or “LLP” (Local Linear Polynomial). The default is “NW”. |
kernel |
allows us the choice between “gaussian”, “quadratic” (Epanechnikov kernel), “triweight” or “uniform” kernel. The default is “quadratic”. |
Details
The expression for the estimator of \beta
can be seen in page 52 in Aneiros-Perez et al. (2004).
Value
A list containing:
BETA |
|
G |
|
Author(s)
German Aneiros Perez ganeiros@udc.es
Ana Lopez Cheda ana.lopez.cheda@udc.es
References
Aneiros-Perez, G., Gonzalez-Manteiga, W. and Vieu, P. (2004) Estimation and testing in a partial linear regression model under long memory dependence. Bernoulli 10, 49-78.
Hardle, W., Liang, H. and Gao, J. (2000) Partially Linear Models. Physica-Verlag.
Speckman, P. (1988) Kernel smoothing in partial linear models. J. R. Statist. Soc. B 50, 413-436.
See Also
Other related functions are: plrm.est
, plrm.gcv
, plrm.cv
.
Examples
# EXAMPLE 1: REAL DATA
data(barnacles1)
data <- as.matrix(barnacles1)
data <- diff(data, 12)
data <- cbind(data,1:nrow(data))
b.h <- plrm.gcv(data)$bh.opt
ajuste <- plrm.beta(data=data, b=b.h[1])
ajuste$BETA
# EXAMPLE 2: SIMULATED DATA
## Example 2a: independent data
set.seed(1234)
# We generate the data
n <- 100
t <- ((1:n)-0.5)/n
beta <- c(0.05, 0.01)
m <- function(t) {0.25*t*(1-t)}
f <- m(t)
x <- matrix(rnorm(200,0,1), nrow=n)
sum <- x%*%beta
epsilon <- rnorm(n, 0, 0.01)
y <- sum + f + epsilon
data_ind <- matrix(c(y,x,t),nrow=100)
# We estimate the parametric component of the PLR model
# (GCV bandwidth)
a <- plrm.beta(data_ind)
a$BETA
## Example 2b: dependent data
set.seed(1234)
# We generate the data
x <- matrix(rnorm(200,0,1), nrow=n)
sum <- x%*%beta
epsilon <- arima.sim(list(order = c(1,0,0), ar=0.7), sd = 0.01, n = n)
y <- sum + f + epsilon
data_dep <- matrix(c(y,x,t),nrow=100)
# We estimate the parametric component of the PLR model
# (CV bandwidth)
b <- plrm.cv(data_dep, ln.0=2)$bh.opt[2,1]
a <-plrm.beta(data_dep, b=b)
a$BETA