par.est {PLRModels} | R Documentation |
Estimation in linear regression models
Description
This routine computes the ordinary least squares estimate for \beta
from a sample (Y_i, X_{i1},...,X_{ip}),
i=1,...,n
, where:
\beta = (\beta_1,...,\beta_p)
is an unknown vector parameter and
Y_i = X_{i1}*\beta_1+ ... + X_{ip}*\beta_p + \epsilon_i.
The random errors, \epsilon_i
, are allowed to be time series.
Usage
par.est(data = data)
Arguments
data |
|
Details
See Seber (1977) and Judge et al. (1980).
Value
A vector containing the corresponding estimate.
Author(s)
German Aneiros Perez ganeiros@udc.es
Ana Lopez Cheda ana.lopez.cheda@udc.es
References
Judge, G.G., Griffiths, W.E., Carter Hill, R., Lutkepohl, H. and Lee, T-C. (1980) The Theory and Practice of Econometrics. Wiley.
Seber, G.A.F. (1977) Linear Regression Analysis. Wiley.
See Also
Other related functions are plrm.beta
and plrm.est
.
Examples
# EXAMPLE 1: REAL DATA
data(barnacles1)
data <- as.matrix(barnacles1)
data <- diff(data, 12)
data <- cbind(data[,1],1,data[,-1])
beta <- par.est(data=data)
beta
residuos <- data[,1] - data[,-1]%*%beta
mean(residuos^2)/var(data[,1])
fitted.values <- data[,-1]%*%beta
plot(data[,1], fitted.values, xlab="y", ylab="y.hat", main="y.hat vs y")
abline(0,1)
# EXAMPLE 2: SIMULATED DATA
## Example 2a: independent data
set.seed(1234)
# We generate the data
n <- 100
beta <- c(0.05, 0.01)
x <- matrix(rnorm(200,0,1), nrow=n)
sum <- x%*%beta
epsilon <- rnorm(n, 0, 0.01)
y <- sum + epsilon
data_ind <- matrix(c(y,x),nrow=100)
# We estimate the parametric component of the PLR model
par.est(data_ind)
## Example 2b: dependent data
set.seed(1234)
# We generate the data
x <- matrix(rnorm(200,0,1), nrow=n)
sum <- x%*%beta
epsilon <- arima.sim(list(order = c(1,0,0), ar=0.7), sd = 0.01, n = n)
y <- sum + epsilon
data_dep <- matrix(c(y,x),nrow=100)
# We estimate the parametric component of the PLR model
par.est(data_dep)