par.ci {PLRModels} | R Documentation |
Confidence intervals estimation in linear regression models
Description
This routine obtains a confidence interval for the value a^T * \beta
, by asymptotic distribution and bootstrap, from a sample (Y_i, X_{i1},...,X_{ip}):
i=1,...,n
, where:
a = (a_1,...,a_p)^T
is an unknown vector,
\beta = (\beta_1,...,\beta_p)^T
is an unknown vector parameter and
Y_i = X_{i1}*\beta_1+ ... + X_{ip}*\beta_p + \epsilon_i.
The random errors, \epsilon_i
, are allowed to be time series.
Usage
par.ci(data=data, seed=123, CI="AD", B=1000, N=50, a=NULL,
p.arima=NULL, q.arima=NULL, p.max=3, q.max=3, alpha=0.05,
alpha2=0.05, num.lb=10, ic="BIC", Var.Cov.eps=NULL)
Arguments
data |
|
seed |
the considered seed. |
CI |
method to obtain the confidence interval. It allows us to choose between: “AD” (asymptotic distribution), “B” (bootstrap) or “all” (both). The default is “AD”. |
B |
number of bootstrap replications. The default is 1000. |
N |
Truncation parameter used in the finite approximation of the MA(infinite) expression of |
a |
Vector which, multiplied by |
p.arima |
the considered p to fit the model ARMA(p,q). |
q.arima |
the considered q to fit the model ARMA(p,q). |
p.max |
if |
q.max |
if |
alpha |
1 - |
alpha2 |
significance level used to check (if needed) the ARMA model fitted to the residuals. The default is 0.05. |
num.lb |
if |
ic |
if |
Var.Cov.eps |
|
Value
A list containing:
Bootstrap |
a dataframe containing |
AD |
a dataframe containing |
pv.Box.test |
p-values of the Ljung-Box test for the model fitted to the residuals. |
pv.t.test |
p-values of the t.test for the model fitted to the residuals. |
Author(s)
German Aneiros Perez ganeiros@udc.es
Ana Lopez Cheda ana.lopez.cheda@udc.es
References
Liang, H., Hardle, W., Sommerfeld, V. (2000) Bootstrap approximation in a partially linear regression model. Journal of Statistical Planning and Inference 91, 413-426.
You, J., Zhou, X. (2005) Bootstrap of a semiparametric partially linear model with autoregressive errors. Statistica Sinica 15, 117-133.
See Also
A related function is plrm.ci
.
Examples
# EXAMPLE 1: REAL DATA
data(barnacles1)
data <- as.matrix(barnacles1)
data <- diff(data, 12)
data <- cbind(data[,1],1,data[,-1])
## Not run: par.ci(data, a=c(1,0,0), CI="all")
## Not run: par.ci(data, a=c(0,1,0), CI="all")
## Not run: par.ci(data, a=c(0,0,1), CI="all")
# EXAMPLE 2: SIMULATED DATA
## Example 2a: dependent data
set.seed(123)
# We generate the data
n <- 100
beta <- c(0.5, 2)
x <- matrix(rnorm(200,0,3), nrow=n)
sum <- x%*%beta
sum <- as.matrix(sum)
eps <- arima.sim(list(order = c(1,0,0), ar=0.7), sd = 0.1, n = n)
eps <- as.matrix(eps)
y <- sum + eps
data_parci <- cbind(y,x)
# We estimate the confidence interval of a^T * beta in the PLR model
## Not run: par.ci(data, a=c(1,0), CI="all")
## Not run: par.ci(data, a=c(0,1), CI="all")