np.gcv {PLRModels} | R Documentation |
Generalized cross-validation bandwidth selection in nonparametric regression models
Description
From a sample {(Y_i, t_i): i=1,...,n}
, this routine computes an optimal bandwidth for estimating m
in the regression model
Y_i= m(t_i) + \epsilon_i.
The regression function, m
, is a smooth but unknown function. The optimal bandwidth is selected by means of the generalized cross-validation procedure. Kernel smoothing is used.
Usage
np.gcv(data = data, h.seq=NULL, num.h = 50, estimator = "NW",
kernel = "quadratic")
Arguments
data |
|
h.seq |
sequence of considered bandwidths in the GCV function. If |
num.h |
number of values used to build the sequence of considered bandwidths. If |
estimator |
allows us the choice between “NW” (Nadaraya-Watson) or “LLP” (Local Linear Polynomial). The default is “NW”. |
kernel |
allows us the choice between “gaussian”, “quadratic” (Epanechnikov kernel), “triweight” or “uniform” kernel. The default is “quadratic”. |
Details
See Craven and Wahba (1979) and Rice (1984).
Value
h.opt |
selected value for the bandwidth. |
GCV.opt |
minimum value of the GCV function. |
GCV |
vector containing the values of the GCV function for each considered bandwidth. |
h.seq |
sequence of considered bandwidths in the GCV function. |
Author(s)
German Aneiros Perez ganeiros@udc.es
Ana Lopez Cheda ana.lopez.cheda@udc.es
References
Craven, P. and Wahba, G. (1979) Smoothing noisy data with spline functions. Numer. Math. 31, 377-403.
Rice, J. (1984) Bandwidth choice for nonparametric regression. Ann. Statist. 12, 1215-1230.
See Also
Other related functions are: np.est
, np.cv
, plrm.est
, plrm.gcv
and plrm.cv
.
Examples
# EXAMPLE 1: REAL DATA
data <- matrix(10,120,2)
data(barnacles1)
barnacles1 <- as.matrix(barnacles1)
data[,1] <- barnacles1[,1]
data <- diff(data, 12)
data[,2] <- 1:nrow(data)
aux <- np.gcv(data)
aux$h.opt
plot(aux$h.seq, aux$GCV, xlab="h", ylab="GCV", type="l")
# EXAMPLE 2: SIMULATED DATA
## Example 2a: independent data
set.seed(1234)
# We generate the data
n <- 100
t <- ((1:n)-0.5)/n
m <- function(t) {0.25*t*(1-t)}
f <- m(t)
epsilon <- rnorm(n, 0, 0.01)
y <- f + epsilon
data_ind <- matrix(c(y,t),nrow=100)
# We apply the function
a <-np.gcv(data_ind)
a$GCV.opt
GCV <- a$GCV
h <- a$h.seq
plot(h, GCV, type="l")