standard_error.PLNPCAfit {PLNmodels}R Documentation

Component-wise standard errors of B

Description

Extracts univariate standard errors for the estimated coefficient of B. Standard errors are computed from the (approximate) Fisher information matrix.

Usage

## S3 method for class 'PLNPCAfit'
standard_error(
  object,
  type = c("variational", "jackknife", "sandwich"),
  parameter = c("B", "Omega")
)

standard_error(
  object,
  type = c("variational", "jackknife", "sandwich"),
  parameter = c("B", "Omega")
)

## S3 method for class 'PLNfit'
standard_error(
  object,
  type = c("variational", "jackknife", "bootstrap", "sandwich"),
  parameter = c("B", "Omega")
)

## S3 method for class 'PLNfit_fixedcov'
standard_error(
  object,
  type = c("variational", "jackknife", "bootstrap", "sandwich"),
  parameter = c("B", "Omega")
)

## S3 method for class 'PLNmixturefit'
standard_error(
  object,
  type = c("variational", "jackknife", "sandwich"),
  parameter = c("B", "Omega")
)

## S3 method for class 'PLNnetworkfit'
standard_error(
  object,
  type = c("variational", "jackknife", "sandwich"),
  parameter = c("B", "Omega")
)

Arguments

object

an R6 object with class PLNfit

type

string describing the type of variance approximation: "variational", "jackknife", "sandwich" (only for fixed covariance). Default is "variational".

parameter

string describing the target parameter: either B (regression coefficients) or Omega (inverse residual covariance)

Value

A p * d positive matrix (same size as BB) with standard errors for the coefficients of BB

Methods (by class)

See Also

vcov.PLNfit() for the complete variance covariance estimation of the coefficient

Examples

data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLN(Abundance ~ 1 + offset(log(Offset)), data = trichoptera,
              control = PLN_param(config_post = list(variational_var = TRUE)))
standard_error(myPLN)

[Package PLNmodels version 1.2.0 Index]