standard_error.PLNPCAfit {PLNmodels} | R Documentation |
Component-wise standard errors of B
Description
Extracts univariate standard errors for the estimated coefficient of B. Standard errors are computed from the (approximate) Fisher information matrix.
Usage
## S3 method for class 'PLNPCAfit'
standard_error(
object,
type = c("variational", "jackknife", "sandwich"),
parameter = c("B", "Omega")
)
standard_error(
object,
type = c("variational", "jackknife", "sandwich"),
parameter = c("B", "Omega")
)
## S3 method for class 'PLNfit'
standard_error(
object,
type = c("variational", "jackknife", "bootstrap", "sandwich"),
parameter = c("B", "Omega")
)
## S3 method for class 'PLNfit_fixedcov'
standard_error(
object,
type = c("variational", "jackknife", "bootstrap", "sandwich"),
parameter = c("B", "Omega")
)
## S3 method for class 'PLNmixturefit'
standard_error(
object,
type = c("variational", "jackknife", "sandwich"),
parameter = c("B", "Omega")
)
## S3 method for class 'PLNnetworkfit'
standard_error(
object,
type = c("variational", "jackknife", "sandwich"),
parameter = c("B", "Omega")
)
Arguments
object |
an R6 object with class PLNfit |
type |
string describing the type of variance approximation: "variational", "jackknife", "sandwich" (only for fixed covariance). Default is "variational". |
parameter |
string describing the target parameter: either B (regression coefficients) or Omega (inverse residual covariance) |
Value
A p * d positive matrix (same size as B
) with standard errors for the coefficients of B
Methods (by class)
-
standard_error(PLNPCAfit)
: Component-wise standard errors of B inPLNPCAfit
(not implemented yet) -
standard_error(PLNfit)
: Component-wise standard errors of B inPLNfit
-
standard_error(PLNfit_fixedcov)
: Component-wise standard errors of B inPLNfit_fixedcov
-
standard_error(PLNmixturefit)
: Component-wise standard errors of B inPLNmixturefit
(not implemented yet) -
standard_error(PLNnetworkfit)
: Component-wise standard errors of B inPLNnetworkfit
(not implemented yet)
See Also
vcov.PLNfit()
for the complete variance covariance estimation of the coefficient
Examples
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLN(Abundance ~ 1 + offset(log(Offset)), data = trichoptera,
control = PLN_param(config_post = list(variational_var = TRUE)))
standard_error(myPLN)