ZIPLNnetworkfamily {PLNmodels} | R Documentation |
An R6 Class to represent a collection of ZIPLNnetwork
Description
The function ZIPLNnetwork()
produces an instance of this class.
This class comes with a set of methods, some of them being useful for the user:
See the documentation for getBestModel()
,
getModel()
and plot()
Super classes
PLNmodels::PLNfamily
-> PLNmodels::Networkfamily
-> ZIPLNnetworkfamily
Public fields
covariates0
the matrix of covariates included in the ZI component
Methods
Public methods
Inherited methods
PLNmodels::PLNfamily$getModel()
PLNmodels::PLNfamily$postTreatment()
PLNmodels::PLNfamily$print()
PLNmodels::Networkfamily$coefficient_path()
PLNmodels::Networkfamily$getBestModel()
PLNmodels::Networkfamily$optimize()
PLNmodels::Networkfamily$plot()
PLNmodels::Networkfamily$plot_objective()
PLNmodels::Networkfamily$plot_stars()
PLNmodels::Networkfamily$show()
Method new()
Initialize all models in the collection
Usage
ZIPLNnetworkfamily$new(penalties, data, control)
Arguments
penalties
a vector of positive real number controlling the level of sparsity of the underlying network.
data
a named list used internally to carry the data matrices
control
a list for controlling the optimization.
Returns
Update current PLNnetworkfit
with smart starting values
Method stability_selection()
Compute the stability path by stability selection
Usage
ZIPLNnetworkfamily$stability_selection( subsamples = NULL, control = ZIPLNnetwork_param() )
Arguments
subsamples
a list of vectors describing the subsamples. The number of vectors (or list length) determines the number of subsamples used in the stability selection. Automatically set to 20 subsamples with size
10*sqrt(n)
ifn >= 144
and0.8*n
otherwise following Liu et al. (2010) recommendations.control
a list controlling the main optimization process in each call to
PLNnetwork()
. SeeZIPLNnetwork()
andZIPLN_param()
for details.
Method clone()
The objects of this class are cloneable with this method.
Usage
ZIPLNnetworkfamily$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
See Also
The function ZIPLNnetwork()
, the class ZIPLNfit_sparse
Examples
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
fits <- PLNnetwork(Abundance ~ 1, data = trichoptera)
class(fits)