| ZIPLNfit_sparse {PLNmodels} | R Documentation |
An R6 Class to represent a ZIPLNfit in a standard, general framework, with sparse inverse residual covariance
Description
An R6 Class to represent a ZIPLNfit in a standard, general framework, with sparse inverse residual covariance
An R6 Class to represent a ZIPLNfit in a standard, general framework, with sparse inverse residual covariance
Super class
PLNmodels::ZIPLNfit -> ZIPLNfit_sparse
Active bindings
penaltythe global level of sparsity in the current model
penalty_weightsa matrix of weights controlling the amount of penalty element-wise.
n_edgesnumber of edges if the network (non null coefficient of the sparse precision matrix)
nb_param_plnnumber of parameters in the PLN part of the current model
vcov_modelcharacter: the model used for the residual covariance
pen_loglikvariational lower bound of the l1-penalized loglikelihood
EBICvariational lower bound of the EBIC
densityproportion of non-null edges in the network
criteriaa vector with loglik, penalized loglik, BIC, EBIC, ICL, R_squared, number of parameters, number of edges and graph density
Methods
Public methods
Inherited methods
Method new()
Initialize a ZIPLNfit_fixed model
Usage
ZIPLNfit_sparse$new(data, control)
Arguments
dataa named list used internally to carry the data matrices
controla list for controlling the optimization. See details.
Method latent_network()
Extract interaction network in the latent space
Usage
ZIPLNfit_sparse$latent_network(type = c("partial_cor", "support", "precision"))Arguments
typeedge value in the network. Can be "support" (binary edges), "precision" (coefficient of the precision matrix) or "partial_cor" (partial correlation between species)
Returns
a square matrix of size ZIPLNfit_sparse$n
Method plot_network()
plot the latent network.
Usage
ZIPLNfit_sparse$plot_network(
type = c("partial_cor", "support"),
output = c("igraph", "corrplot"),
edge.color = c("#F8766D", "#00BFC4"),
remove.isolated = FALSE,
node.labels = NULL,
layout = layout_in_circle,
plot = TRUE
)Arguments
typeedge value in the network. Either "precision" (coefficient of the precision matrix) or "partial_cor" (partial correlation between species).
outputOutput type. Either
igraph(for the network) orcorrplot(for the adjacency matrix)edge.colorLength 2 color vector. Color for positive/negative edges. Default is
c("#F8766D", "#00BFC4"). Only relevant for igraph output.remove.isolatedif
TRUE, isolated node are remove before plotting. Only relevant for igraph output.node.labelsvector of character. The labels of the nodes. The default will use the column names ot the response matrix.
layoutan optional igraph layout. Only relevant for igraph output.
plotlogical. Should the final network be displayed or only sent back to the user. Default is
TRUE.
Method clone()
The objects of this class are cloneable with this method.
Usage
ZIPLNfit_sparse$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
## Not run:
# See other examples in function ZIPLN
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- ZIPLN(Abundance ~ 1, data = trichoptera, control= ZIPLN_param(penalty = 1))
class(myPLN)
print(myPLN)
plot(myPLN)
## End(Not run)