| PLNnetworkfamily {PLNmodels} | R Documentation | 
An R6 Class to represent a collection of PLNnetworkfits
Description
The function PLNnetwork() produces an instance of this class.
This class comes with a set of methods mostly used to compare
network fits (in terms of goodness of fit) or extract one from
the family (based on penalty parameter and/or goodness of it).
See the documentation for getBestModel(),
getModel() and plot() for the user-facing ones.
Super classes
PLNmodels::PLNfamily -> PLNmodels::Networkfamily -> PLNnetworkfamily
Methods
Public methods
Inherited methods
- PLNmodels::PLNfamily$getModel()
- PLNmodels::PLNfamily$postTreatment()
- PLNmodels::PLNfamily$print()
- PLNmodels::Networkfamily$coefficient_path()
- PLNmodels::Networkfamily$getBestModel()
- PLNmodels::Networkfamily$optimize()
- PLNmodels::Networkfamily$plot()
- PLNmodels::Networkfamily$plot_objective()
- PLNmodels::Networkfamily$plot_stars()
- PLNmodels::Networkfamily$show()
Method new()
Initialize all models in the collection
Usage
PLNnetworkfamily$new(penalties, data, control)
Arguments
- penalties
- a vector of positive real number controlling the level of sparsity of the underlying network. 
- data
- a named list used internally to carry the data matrices 
- control
- a list for controlling the optimization. 
Returns
Update current PLNnetworkfit with smart starting values
Method stability_selection()
Compute the stability path by stability selection
Usage
PLNnetworkfamily$stability_selection( subsamples = NULL, control = PLNnetwork_param() )
Arguments
- subsamples
- a list of vectors describing the subsamples. The number of vectors (or list length) determines the number of subsamples used in the stability selection. Automatically set to 20 subsamples with size - 10*sqrt(n)if- n >= 144and- 0.8*notherwise following Liu et al. (2010) recommendations.
- control
- a list controlling the main optimization process in each call to - PLNnetwork(). See- PLNnetwork()and- PLN_param()for details.
Method clone()
The objects of this class are cloneable with this method.
Usage
PLNnetworkfamily$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
See Also
The function PLNnetwork(), the class PLNnetworkfit
Examples
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
fits <- PLNnetwork(Abundance ~ 1, data = trichoptera)
class(fits)