| PLNLDAfit_diagonal {PLNmodels} | R Documentation | 
An R6 Class to represent a PLNfit in a LDA framework with diagonal covariance
Description
The function PLNLDA() produces an instance of an object with class PLNLDAfit.
This class comes with a set of methods, some of them being useful for the user:
See the documentation for the methods inherited by PLNfit(), the plot() method for
LDA visualization and predict() method for prediction
Super classes
PLNmodels::PLNfit -> PLNmodels::PLNLDAfit -> PLNLDAfit_diagonal
Active bindings
- vcov_model
- character: the model used for the residual covariance 
- nb_param
- number of parameters in the current PLN model 
Methods
Public methods
Inherited methods
- PLNmodels::PLNfit$optimize_vestep()
- PLNmodels::PLNfit$predict_cond()
- PLNmodels::PLNfit$print()
- PLNmodels::PLNfit$update()
- PLNmodels::PLNLDAfit$optimize()
- PLNmodels::PLNLDAfit$plot_LDA()
- PLNmodels::PLNLDAfit$plot_correlation_map()
- PLNmodels::PLNLDAfit$plot_individual_map()
- PLNmodels::PLNLDAfit$postTreatment()
- PLNmodels::PLNLDAfit$predict()
- PLNmodels::PLNLDAfit$setVisualization()
- PLNmodels::PLNLDAfit$show()
Method new()
Initialize a PLNfit model
Usage
PLNLDAfit_diagonal$new( grouping, responses, covariates, offsets, weights, formula, control )
Arguments
- grouping
- a factor specifying the class of each observation used for discriminant analysis. 
- responses
- the matrix of responses (called Y in the model). Will usually be extracted from the corresponding field in PLNfamily-class 
- covariates
- design matrix (called X in the model). Will usually be extracted from the corresponding field in PLNfamily-class 
- offsets
- offset matrix (called O in the model). Will usually be extracted from the corresponding field in PLNfamily-class 
- weights
- an optional vector of observation weights to be used in the fitting process. 
- formula
- model formula used for fitting, extracted from the formula in the upper-level call 
- control
- a list for controlling the optimization. See details. 
Method clone()
The objects of this class are cloneable with this method.
Usage
PLNLDAfit_diagonal$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
Examples
## Not run: 
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLNLDA <- PLNLDA(Abundance ~ 1, data = trichoptera, control = PLN_param(covariance = "diagonal"))
class(myPLNLDA)
print(myPLNLDA)
## End(Not run)