PLNLDAfit_diagonal {PLNmodels} | R Documentation |
An R6 Class to represent a PLNfit in a LDA framework with diagonal covariance
Description
The function PLNLDA()
produces an instance of an object with class PLNLDAfit
.
This class comes with a set of methods, some of them being useful for the user:
See the documentation for the methods inherited by PLNfit()
, the plot()
method for
LDA visualization and predict()
method for prediction
Super classes
PLNmodels::PLNfit
-> PLNmodels::PLNLDAfit
-> PLNLDAfit_diagonal
Active bindings
vcov_model
character: the model used for the residual covariance
nb_param
number of parameters in the current PLN model
Methods
Public methods
Inherited methods
PLNmodels::PLNfit$optimize_vestep()
PLNmodels::PLNfit$predict_cond()
PLNmodels::PLNfit$print()
PLNmodels::PLNfit$update()
PLNmodels::PLNLDAfit$optimize()
PLNmodels::PLNLDAfit$plot_LDA()
PLNmodels::PLNLDAfit$plot_correlation_map()
PLNmodels::PLNLDAfit$plot_individual_map()
PLNmodels::PLNLDAfit$postTreatment()
PLNmodels::PLNLDAfit$predict()
PLNmodels::PLNLDAfit$setVisualization()
PLNmodels::PLNLDAfit$show()
Method new()
Initialize a PLNfit
model
Usage
PLNLDAfit_diagonal$new( grouping, responses, covariates, offsets, weights, formula, control )
Arguments
grouping
a factor specifying the class of each observation used for discriminant analysis.
responses
the matrix of responses (called Y in the model). Will usually be extracted from the corresponding field in PLNfamily-class
covariates
design matrix (called X in the model). Will usually be extracted from the corresponding field in PLNfamily-class
offsets
offset matrix (called O in the model). Will usually be extracted from the corresponding field in PLNfamily-class
weights
an optional vector of observation weights to be used in the fitting process.
formula
model formula used for fitting, extracted from the formula in the upper-level call
control
a list for controlling the optimization. See details.
Method clone()
The objects of this class are cloneable with this method.
Usage
PLNLDAfit_diagonal$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
## Not run:
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLNLDA <- PLNLDA(Abundance ~ 1, data = trichoptera, control = PLN_param(covariance = "diagonal"))
class(myPLNLDA)
print(myPLNLDA)
## End(Not run)