bicPLMIX {PLMIX} | R Documentation |
BIC for the MLE of a mixture of Plackett-Luce models
Description
Compute BIC value for the MLE of a mixture of Plackett-Luce models fitted to partial orderings.
Usage
bicPLMIX(max_log_lik, pi_inv, G, ref_known = TRUE, ref_vary = FALSE)
Arguments
max_log_lik |
Maximized log-likelihood value. |
pi_inv |
An object of class |
G |
Number of mixture components. |
ref_known |
Logical: whether the component-specific reference orders are known (not to be estimated). Default is |
ref_vary |
Logical: whether the reference orders vary across mixture components. Default is |
Details
The max_log_lik
and the BIC values can be straightforwardly obtained from the output of the mapPLMIX
and mapPLMIX_multistart
functions when the default noninformative priors are adopted in the MAP procedure. So, the bicPLMIX
function is especially useful to compute the BIC value from the output of alternative MLE methods for mixtures of Plackett-Luce models implemented, for example, with other softwares.
The ref_known
and ref_vary
arguments accommodate for the more general mixture of Extended Plackett-Luce models (EPL), involving the additional reference order parameters (Mollica and Tardella 2014). Since the Plackett-Luce model is a special instance of the EPL with the reference order equal to the identity permutation (1,\dots,K)
, the default values of ref_known
and ref_vary
are set equal, respectively, to TRUE
and FALSE
.
Value
A list of two named objects:
max_log_lik |
The |
bic |
BIC value. |
Author(s)
Cristina Mollica and Luca Tardella
References
Mollica, C. and Tardella, L. (2017). Bayesian Plackett-Luce mixture models for partially ranked data. Psychometrika, 82(2), pages 442–458, ISSN: 0033-3123, DOI: 10.1007/s11336-016-9530-0.
Mollica, C. and Tardella, L. (2014). Epitope profiling via mixture modeling for ranked data. Statistics in Medicine, 33(21), pages 3738–3758, ISSN: 0277-6715, DOI: 10.1002/sim.6224.
Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist., 6(2), pages 461–464, ISSN: 0090-5364, DOI: 10.1002/sim.6224.
See Also
mapPLMIX
and mapPLMIX_multistart
Examples
data(d_carconf)
K <- ncol(d_carconf)
MAP_mult <- mapPLMIX_multistart(pi_inv=d_carconf, K=K, G=3, n_start=2, n_iter=400*3)
bicPLMIX(max_log_lik=MAP_mult$mod$max_objective, pi_inv=d_carconf, G=3)$bic
## Equivalently
MAP_mult$mod$bic