| PKLMtest {PKLMtest} | R Documentation | 
PKLMtest: compute a p-value for testing MCAR
Description
PKLMtest: compute a p-value for testing MCAR
Usage
PKLMtest(
  X,
  num.proj = 300,
  num.trees.per.proj = 10,
  nrep = 500,
  min.node.size = 10,
  size.resp.set = 2,
  compute.partial.pvals = FALSE,
  ...
)
Arguments
X | 
 a numeric matrix containing missing values encoded as NA, the data.  | 
num.proj | 
 a positive integer specifying the number of projections to consider for the score.  | 
num.trees.per.proj | 
 a positive integer, the number of trees per projection.  | 
nrep | 
 a positive integer, the number of permutations.  | 
min.node.size | 
 a positive number, the minimum number of nodes in a tree.  | 
size.resp.set | 
 an integer (>= 2), maximum number of classes allowed to be compared in each projection.  | 
compute.partial.pvals | 
 a boolean, indicate if partial p-values shopuld be computed as well.  | 
... | 
 additional parameters.  | 
Value
a numeric value, the p-value(s) for the MCAR test, the first value is always the global p-value and if compute.partial.pvals is set to TRUE, the next values are the partial p-values for the relative importance of each variable.
Examples
n <- 100
X <- cbind(rnorm(n),rnorm(n))
X.NA <- X
X.NA[,1] <- ifelse(stats::runif(n)<=0.2, NA, X[,1])
pval <- PKLMtest(X.NA, num.proj = 5)