PKLMtest {PKLMtest} | R Documentation |
PKLMtest: compute a p-value for testing MCAR
Description
PKLMtest: compute a p-value for testing MCAR
Usage
PKLMtest(
X,
num.proj = 300,
num.trees.per.proj = 10,
nrep = 500,
min.node.size = 10,
size.resp.set = 2,
compute.partial.pvals = FALSE,
...
)
Arguments
X |
a numeric matrix containing missing values encoded as NA, the data. |
num.proj |
a positive integer specifying the number of projections to consider for the score. |
num.trees.per.proj |
a positive integer, the number of trees per projection. |
nrep |
a positive integer, the number of permutations. |
min.node.size |
a positive number, the minimum number of nodes in a tree. |
size.resp.set |
an integer (>= 2), maximum number of classes allowed to be compared in each projection. |
compute.partial.pvals |
a boolean, indicate if partial p-values shopuld be computed as well. |
... |
additional parameters. |
Value
a numeric value, the p-value(s) for the MCAR test, the first value is always the global p-value and if compute.partial.pvals is set to TRUE, the next values are the partial p-values for the relative importance of each variable.
Examples
n <- 100
X <- cbind(rnorm(n),rnorm(n))
X.NA <- X
X.NA[,1] <- ifelse(stats::runif(n)<=0.2, NA, X[,1])
pval <- PKLMtest(X.NA, num.proj = 5)