initials_adjpin {PINstimation} | R Documentation |
AdjPIN initial parameter sets of Ersan & Ghachem (2022b)
Description
Based on the algorithm in Ersan and Ghachem (2022b),
generates sets of initial parameters to be used in the maximum likelihood
estimation of AdjPIN
model.
Usage
initials_adjpin(data, xtraclusters = 4, restricted = list(),
verbose = TRUE)
Arguments
data |
A dataframe with 2 variables: the first corresponds to buyer-initiated trades (buys), and the second corresponds to seller-initiated trades (sells). |
xtraclusters |
An integer used to divide trading days into
# |
restricted |
A binary list that allows estimating restricted
AdjPIN models by specifying which model parameters are assumed to be equal.
It contains one or multiple of the following four elements
|
verbose |
a binary variable that determines whether information messages
about the initial parameter sets, including the number of the initial
parameter sets generated. No message is shown when |
Details
The argument 'data' should be a numeric dataframe, and contain
at least two variables. Only the first two variables will be considered:
The first variable is assumed to correspond to the total number of
buyer-initiated trades, while the second variable is assumed to
correspond to the total number of seller-initiated trades. Each row or
observation correspond to a trading day. NA
values will be ignored.
The function initials_adjpin()
implements the algorithm suggested in
Ersan and Ghachem (2022b), and uses a hierarchical
agglomerative clustering (HAC) to find initial parameter sets for
the maximum likelihood estimation.
Value
Returns a dataframe of numerical vectors of ten elements
{\alpha
, \delta
, \theta
, \theta'
,
\epsilon
b, \epsilon
s, \mu
b, \mu
s, \Delta
b, \Delta
s}.
References
Ersan O (2016).
“Multilayer Probability of Informed Trading.”
Available at SSRN 2874420.
Ersan O, Alici A (2016).
“An unbiased computation methodology for estimating the probability of informed trading (PIN).”
Journal of International Financial Markets, Institutions and Money, 43, 74–94.
ISSN 10424431.
Ersan O, Ghachem M (2022b).
“A methodological approach to the computational problems in the estimation of adjusted PIN model.”
Available at SSRN 4117954.
Examples
# There is a preloaded quarterly dataset called 'dailytrades' with 60
# observations. Each observation corresponds to a day and contains the
# total number of buyer-initiated trades ('B') and seller-initiated
# trades ('S') on that day. To know more, type ?dailytrades
xdata <- dailytrades
# Obtain a dataframe of initial parameter sets for the maximum likelihood
# estimation using the algorithm of Ersan and Ghachem (2022b).
init.sets <- initials_adjpin(xdata)
# Use the list to estimate adjpin using the adjpin() method
# Show the value of adjusted PIN
estimate <- adjpin(xdata, initialsets = init.sets, verbose = FALSE)
show(estimate@adjpin)