| estimate.mpin.ecm-class {PINstimation} | R Documentation |
MPIN estimation results (ECM)
Description
The class estimate.mpin.ecm is the blueprint of
S4 objects that store the results of the estimation of the MPIN
model using the Expectation-Conditional Maximization method, as
implemented in the function mpin_ecm().
Usage
## S4 method for signature 'estimate.mpin.ecm'
show(object)
selectModel(object, criterion)
## S4 method for signature 'estimate.mpin.ecm'
selectModel(object, criterion)
getSummary(object)
## S4 method for signature 'estimate.mpin.ecm'
getSummary(object)
Arguments
object |
an object of class |
criterion |
a character string specifying the model selection criterion.
|
Functions
-
selectModel(estimate.mpin.ecm): returns the optimal model among the estimated models, i.e., the model having the lowest information criterion, provided by the user. -
getSummary(estimate.mpin.ecm): returns a summary of the estimation of theMPINmodel using theECMalgorithm for different values of the argumentlayers. For each estimation, the number of layers, theMPINvalue, the log-likelihood value, as well as the values of the different information criteria, namelyAIC,BICandAWEare displayed.
Slots
success(
logical) returns the valueTRUEwhen the estimation has succeeded,FALSEotherwise.errorMessage(
character) returns an error message if theMPINestimation has failed, and is empty otherwise.convergent.sets(
numeric) returns the number of initial parameter sets at which the likelihood maximization converged.method(
character) returns the method of estimation, and is equal to 'Expectation-Conditional Maximization Algorithm'.layers(
numeric) returns the number of layers estimated by the Expectation-Conditional Maximization algorithm, or provided by the user.optimal(
logical) returns whether the number of layers used for the estimation is provided by the user(optimal=FALSE), or determined by theECMalgorithm(optimal=TRUE).parameters(
list) returns the list of the maximum likelihood estimates (\alpha,\delta,\mu,\epsilonb,\epsilons), where\alpha,\delta, and\muare numeric vectors of lengthlayers.aggregates(
numeric) returns an aggregation of information layers' parameters alongside with\epsilonb and\epsilons. The aggregated parameters are calculated as follows:\alpha_{agg} = \sum \alpha_j\alpha*= \sum \alphaj\delta_{agg} = \sum \alpha_j \times \delta_j\delta*= \sum \alphaj\deltaj, and\mu_{agg} = \sum \alpha_j \times \mu_j\mu*= \sum \alphaj\muj.likelihood(
numeric) returns the value of the (log-)likelihood function evaluated at the optimal set of parameters.mpinJ(
numeric) returns the values of the multilayer probability of informed trading per layer, calculated using the layer-specific estimated parameters.mpin(
numeric) returns the global value of the multilayer probability of informed trading. It is the sum of the multilayer probabilities of informed trading per layer stored in the slotmpinJ.mpin.goodbad(
list) returns a list containing a decomposition ofMPINinto good-news, and bad-newsMPINcomponents. The decomposition has been suggested for PIN measure in Brennan et al. (2016). The list has four elements:mpinG, andmpinBare the global good-news, and bad-news components ofMPIN, whilempinGj, andmpinBjare two vectors containing the good-news (bad-news) components ofMPINcomputed per layer.dataset(
dataframe) returns the dataset of buys and sells used in the ECM estimation of the MPIN model.initialsets(
dataframe) returns the initial parameter sets used in the ECM estimation of the MPIN model.details(
dataframe) returns a dataframe containing the estimated parameters of theECMmethod for each initial parameter set.models(
list) returns the list ofestimate.mpin.ecmobjects storing the results of estimation using the functionmpin_ecm()for different values of the argumentlayers. It returnsNULLwhen the argumentlayersof the functionmpin_ecm()take a specific value.AIC(
numeric) returns the value of the Akaike Information Criterion (AIC).BIC(
numeric) returns the value of the Bayesian Information Criterion (BIC).AWE(
numeric) returns the value of the Approximate Weight of Evidence.criterion(
character) returns the model selection criterion used to find the optimal estimate for theMPINmodel. It takes one of these values'BIC','AIC','AWE'; which stand for Bayesian Information Criterion, Akaike Information Criterion, and Approximate Weight of Evidence, respectively.hyperparams(
list) returns the hyperparameters of theECMalgorithm, which areminalpha,maxeval,tolerance, andmaxlayers. Check the details section ofmpin_ecm()to know more about these parameters.runningtime(
numeric) returns the running time of the estimation in seconds.