inference {PHInfiniteEstimates}R Documentation

Perform inference on conditional sample space.

Description

This function performs classical frequentist statistical inference to a discrete multivariate canonical exponential family. It produces the maximum likelihood estimator, one- and two-sided p-values for the test that model parameters are zero, and providing confidence intervals for the parameters. The discrete probability model is given by a set of possible values of the random vectors, and null weights for these vectors. Such a discrete probability model arises in logistic regression, and this function is envisioned to be applied to the results of a network algorithm for conditional logistic regression. Examples apply this to data from Hirji et al. (1987), citing Goorin et al. (1987).

Usage

inference(
  netout,
  alpha = 0.05,
  rng = c(-5, 5),
  alternative = c("two.sided", "less", "greater")
)

Arguments

netout

List of the sort provided by network.

alpha

Test level, or 1- confidence level.

rng

Range of possible parameter values.

alternative

String indicating two- or one-sided alternative, and, if one-sided, direction.

Value

List of outputs, including

and including standard stats:::orint.htest components, and of class htest.

References

Hirji KF, Mehta CR, Patel NR (1987). “Computing Distributions for Exact Logistic Regression.” Journal of the American Statistical Association, 82(400), pp. 1110-1117. ISSN 01621459, doi:10.2307/2289388.

Goorin AM, Perez–Atayde A, Gebhardt M, Andersen J (1987). “Weekly High–Dose Methotrexate and Doxorubicin for Osteosarcoma: The Dana–Farber Cancer Institute/The Children's Hospital – Study III.” Journal of Clinical Oncology. doi:10.1200/JCO.1987.5.8.1178.

Examples

#Columns in table are:
# Lymphocytic Infiltration (1=low, 0=high)
# Sex (1=male, 0=female)
# Any Ostioid Pathology (1=yes, 0=no)
# Number in LI-Sex-AOP group
# Number in LI-Sex-AOP group with disease free interval greater than 3 y
goorin<-data.frame(LI=c(0,0,0,0,1,1,1,1),Sex=c(0,0,1,1,0,0,1,1),
   AOP=c(0,1,0,1,0,1,0,1),N=c(3,2,4,1,5,5,9,17),Y=c(3,2,4,1,5,3,5,6))

netout<-network(goorin[,1:3],goorin[,4],conditionon=1:3,resp=goorin[,5])
inference(netout)


[Package PHInfiniteEstimates version 2.9.5 Index]