predict.ngr {PFLR} | R Documentation |
Predict Method for ngr Objects
Description
Predicted values based on "ngr" class objects.
Usage
## S3 method for class 'ngr'
predict(object, Xnew, ...)
Arguments
object |
An object of class "ngr". |
Xnew |
New covariate matrix for prediction, should be dense, centred. |
... |
Not applicable |
Value
Estimated Y hat value.
Examples
library(fda)
betaind = 1
snr = 2
nsim = 1
n = 50
p = 21
Y = array(NA,c(n,nsim))
X = array(NA,c(n,p,nsim))
domain = c(0,1)
M = 20
d = 3
norder = d+1
nknots = M+1
tobs = seq(domain[1],domain[2],length.out = p)
knots = seq(domain[1],domain[2],length.out = nknots)
nbasis = nknots + norder - 2
basis = create.bspline.basis(knots,nbasis,norder)
basismat = eval.basis(tobs, basis)
h = (domain[2]-domain[1])/M
cef = c(1, rep(c(4,2), (M-2)/2), 4, 1)
V = eval.penalty(basis,int2Lfd(2))
alphaPS = 10^(-(10:3))
kappa = 10^(-(8:7))
tau = exp(seq(-35,-28,len=20))
gamma = 0.5
for(itersim in 1:nsim)
{
dat = ngr.data.generator.bsplines(n=n,nknots=64,norder=4,p=p,domain=domain,snr=snr,betaind=betaind)
Y[,itersim] = dat$Y
X[,,itersim] = dat$X
}
ngrfit = ngr(Y=Y[1:n,1],X=(X[1:n,,1]),M,d,domain,extra= list(alphaPS=alphaPS, kappa=kappa, tau=tau))
predict(ngrfit,X[1:n,,1])
[Package PFLR version 1.0.0 Index]