meantest.clx {PEtests} | R Documentation |
Two-sample high-dimensional mean test (Cai, Liu and Xia, 2014)
Description
This function implements the two-sample l_\infty
-norm-based
high-dimensional mean test proposed in Cai, Liu and Xia (2014).
Suppose \{\mathbf{X}_1, \ldots, \mathbf{X}_{n_1}\}
are i.i.d.
copies of \mathbf{X}
, and \{\mathbf{Y}_1, \ldots, \mathbf{Y}_{n_2}\}
are i.i.d. copies of \mathbf{Y}
.
The test statistic is defined as
M_{CLX}=\frac{n_1n_2}{n_1+n_2}\max_{1\leq j\leq p}
\frac{(\bar{X_j}-\bar{Y_j})^2}
{\frac{1}{n_1+n_2} [\sum_{u=1}^{n_1} (X_{uj}-\bar{X_j})^2+\sum_{v=1}^{n_2} (Y_{vj}-\bar{Y_j})^2] }
With some regularity conditions, under the null hypothesis H_{0c}: \mathbf{\Sigma}_1 = \mathbf{\Sigma}_2
,
the test statistic M_{CLX}-2\log p+\log\log p
converges in distribution to
a Gumbel distribution G_{mean}(x) = \exp(-\frac{1}{\sqrt{\pi}}\exp(-\frac{x}{2}))
as n_1, n_2, p \rightarrow \infty
.
The asymptotic p
-value is obtained by
p_{CLX} = 1-G_{mean}(M_{CLX}-2\log p+\log\log p).
Usage
meantest.clx(dataX,dataY)
Arguments
dataX |
an |
dataY |
an |
Value
stat
the value of test statistic
pval
the p-value for the test.
References
Cai, T. T., Liu, W., and Xia, Y. (2014). Two-sample test of high dimensional means under dependence. Journal of the Royal Statistical Society: Series B: Statistical Methodology, 76(2):349–372.
Examples
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
meantest.clx(X,Y)