covtest.clx {PEtests} | R Documentation |
Two-sample high-dimensional covariance test (Cai, Liu and Xia, 2013)
Description
This function implements the two-sample l_\infty
-norm-based
high-dimensional covariance test proposed in Cai, Liu and Xia (2013).
Suppose \{\mathbf{X}_1, \ldots, \mathbf{X}_{n_1}\}
are i.i.d.
copies of \mathbf{X}
, and \{\mathbf{Y}_1, \ldots, \mathbf{Y}_{n_2}\}
are i.i.d. copies of \mathbf{Y}
. The test statistic is defined as
T_{CLX} = \max_{1\leq i,j \leq p} \frac{(\hat\sigma_{ij1}-\hat\sigma_{ij2})^2}
{\hat\theta_{ij1}/n_1+\hat\theta_{ij2}/n_2},
where \hat\sigma_{ij1}
and \hat\sigma_{ij2}
are the sample covariances,
and \hat\theta_{ij1}/n_1+\hat\theta_{ij2}/n_2
estimates the variance of
\hat{\sigma}_{ij1}-\hat{\sigma}_{ij2}
.
The explicit formulas of \hat\sigma_{ij1}
, \hat\sigma_{ij2}
,
\hat\theta_{ij1}
and \hat\theta_{ij2}
can be found
in Section 2 of Cai, Liu and Xia (2013).
With some regularity conditions, under the null hypothesis H_{0c}: \mathbf{\Sigma}_1 = \mathbf{\Sigma}_2
,
the test statistic T_{CLX}-4\log p+\log\log p
converges in distribution to
a Gumbel distribution G_{cov}(x) = \exp(-\frac{1}{\sqrt{8\pi}}\exp(-\frac{x}{2}))
as n_1, n_2, p \rightarrow \infty
.
The asymptotic p
-value is obtained by
p_{CLX} = 1-G_{cov}(T_{CLX}-4\log p+\log\log p).
Usage
covtest.clx(dataX,dataY)
Arguments
dataX |
an |
dataY |
an |
Value
stat
the value of test statistic
pval
the p-value for the test.
References
Cai, T. T., Liu, W., and Xia, Y. (2013). Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. Journal of the American Statistical Association, 108(501):265–277.
Examples
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
covtest.clx(X,Y)