mult.sample.test {PEkit} | R Documentation |
Test for \psi
of multiple samples
Description
Likelihood ratio test for the hypotheses H_0: \: \psi_1=\psi_2=...=\psi_d
and
H_1: \: \psi_1 \neq \psi_2 \neq ... \neq \psi_d
, where \psi_1,\psi_2,
...,\psi_d
are the
dispersal parameters of the d
samples in the columns of the input data array x
.
Usage
mult.sample.test(x)
Arguments
x |
The data array to be tested. Each column of |
Details
Calculates the Likelihood Ratio Test statistic
-2log(L(\hat{\psi})/L(\hat{\psi}_1, \hat{\psi}_2, ..., \hat{\psi}_d)),
where L is the likelihood function of observing the d
input samples given
a single \psi
in the numerator and d
different parameters \psi_1,\psi_2,
...,\psi_d
for each sample respectively in the denominator. According
to the theory of Likelihood Ratio Tests, this statistic converges in
distribution to a \chi_{d-1}^2
-distribution when the null-hypothesis is true, where d-1
is the
difference in the amount of parameters between the considered models. To
calculate the statistic, the Maximum Likelihood Estimate for
\psi_1,\: \psi_2,\: ..., \: \psi_d
of H_1
and the shared \psi
of H_0
are calculated.
Value
Gives a vector with the Likelihood Ratio Test -statistic Lambda
, as well as the
p-value of the test p
.
References
Neyman, J., & Pearson, E. S. (1933). On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical Or Physical Character, 231(694-706), 289-337. <doi: 10.1098/rsta.1933.0009>.
Examples
##Create samples with different n and psi:
set.seed(111)
x<-rPD(1200, 15)
y<-c( rPD(1000, 20), rep(NA, 200) )
z<-c( rPD(800, 30), rep(NA, 400) )
samples<-cbind(cbind(x, y), z)
##Run test
mult.sample.test(samples)