sirt {PEIP} | R Documentation |
SIRT Algorithm for sparse matrix inversion
Description
Row action method for inversion of matrices, using SIRT algorithm.
Usage
sirt(A, b, tolx, maxiter)
Arguments
A |
Design Matrix |
b |
vector, Right hand side |
tolx |
numeric, tolerance for stopping |
maxiter |
integer, Maximum iterations |
Details
Iterates until conversion
Value
Solution vector
Author(s)
Jonathan M. Lees<jonathan.lees@unc.edu>
References
Lees, J. M. and R. S. Crosson (1989): Tomographic inversion for three-dimensional velocity structure at Mount St. Helens using earthquake data, J. Geophys. Res., 94(B5), 5716-5728.
See Also
art, kac
Examples
set.seed(2015)
G = setDesignG()
### Setup the true model.
mtruem=matrix(rep(0, 16*16), ncol=16,nrow=16);
mtruem[9,9]=1; mtruem[9,10]=1; mtruem[9,11]=1;
mtruem[10,9]=1; mtruem[10,11]=1;
mtruem[11,9]=1; mtruem[11,10]=1; mtruem[11,11]=1;
mtruem[2,3]=1; mtruem[2,4]=1;
mtruem[3,3]=1; mtruem[3,4]=1;
### reshape the true model to be a vector
mtruev=as.vector(mtruem);
### Compute the data.
dtrue=G %*% mtruev;
### Add the noise.
d=dtrue+0.01*rnorm(length(dtrue));
msirt<-sirt(G,d,0.01,200)
par(mfrow=c(1,2))
imagesc(matrix(mtruem,16,16) , asp=1 , main="True Model" );
imagesc(matrix(msirt,16,16) , asp=1 , main="SIRT Solution" );
[Package PEIP version 2.2-5 Index]