estimatePDFmv {PDFEstimator} | R Documentation |
Multivariate Nonparametric Density Estimation
Description
Estimates the multivariate probability density function for a data sample containing up to 3 variables.
Usage
estimatePDFmv(sample, debug = 0, resolution = NULL)
Arguments
sample |
data sample from which to calculate the density estimate. Each column of data represents an independent variable. |
debug |
verbose output printed to console |
resolution |
grid length of data points for each independent variable. |
Details
A multivariate nonparametric density estimator based on the maximum-entropy method. Accurately predicts a probability density function (PDF) for random data for 1, 2, or 3 variables.
Value
x |
estimated range of density data |
pdf |
estimated probability density function |
Author(s)
Jenny Farmer, Donald Jacobs
References
Farmer, J. and D. Jacobs (2018). "High throughput nonparametric probability density estimation." PLoS One 13(5): e0196937.
Examples
#Estimates a 2-variable normal distribution with 10000 sample points
library(MultiRNG)
nSamples = 5000
cmat = matrix(c(1.0, 0.0, 0.0, 1.0), nrow = 2, ncol = 2)
meanvec = c(0, 0)
sample = draw.d.variate.normal(no.row = nSamples, d = 2,
mean.vec = meanvec, cov.mat = cmat)
mvPDF = estimatePDFmv(sample)
[Package PDFEstimator version 4.5 Index]