person.posterior {PCMRS} | R Documentation |
Calculate Posterior Estimates for Person Parameters
Description
Calculates posterior estimates for both person parameters, namely the ability parameters theta and the response style parameters gamma.
Usage
person.posterior(model, cores = 30, tol = 1e-04, maxEval = 600, which = NULL)
Arguments
model |
Object of class |
cores |
Number of cores to be used in parallelized computation. |
tol |
The maximum tolerance for numerical integration, default 1e-4.
For more details see |
maxEval |
The maximum number of function evaluations needed in numerical integration.
If specified as 0 implies no limit. For more details see |
which |
Optional vector to specify that only for a subset of all persons the posterior estimate is calculated. |
Value
Matrix containing all estimates of person parameters, both theta and gamma.
Author(s)
Gunther Schauberger
gunther.schauberger@tum.de
https://www.sg.tum.de/epidemiologie/team/schauberger/
References
Tutz, Gerhard, Schauberger, Gunther and Berger, Moritz (2018): Response Styles in the Partial Credit Model, Applied Psychological Measurement, https://journals.sagepub.com/doi/10.1177/0146621617748322
See Also
Examples
## Not run:
################################################
## Small example to illustrate model and person estimation
################################################
data(tenseness)
set.seed(5)
samples <- sample(1:nrow(tenseness), 100)
tense_small <- tenseness[samples,1:4]
m_small <- PCMRS(tense_small, cores = 2)
m_small
plot(m_small)
persons <- person.posterior(m_small, cores = 2)
plot(jitter(persons, 100))
################################################
## Example from Tutz et al. 2017:
################################################
data(emotion)
m.emotion <- PCMRS(emotion)
m.emotion
plot(m.emotion)
## End(Not run)